{"title":"阶梯掺杂p柱二维准sj器件的研究","authors":"Yu Lulu, W. Yuying, C. Jianbing","doi":"10.1109/ISNE.2019.8896434","DOIUrl":null,"url":null,"abstract":"In this paper, a new quasi-Super Junction Lateral double-diffused-metal-oxide-semiconductor (SJ LDMOS) with step doping P-pillar was proposed. Because the depletion from the source side to the drain side is enhanced in the drift region, the doping concentrations in the P-pillar are decreased reversely to achieve charge balance and optimize the bulk electric field. The breakdown voltage and on-resistance of the new structure are investigated through the simulation, at the same time, the other key parameters were simulated and analyzed. Simulation results show that the trade-off between the breakdown voltage and the on-resistance is significantly improved due to bulk field optimization from the step doping in the P-pillar.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Two-dimensional quasi-SJ device with step-doping P-pillar\",\"authors\":\"Yu Lulu, W. Yuying, C. Jianbing\",\"doi\":\"10.1109/ISNE.2019.8896434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new quasi-Super Junction Lateral double-diffused-metal-oxide-semiconductor (SJ LDMOS) with step doping P-pillar was proposed. Because the depletion from the source side to the drain side is enhanced in the drift region, the doping concentrations in the P-pillar are decreased reversely to achieve charge balance and optimize the bulk electric field. The breakdown voltage and on-resistance of the new structure are investigated through the simulation, at the same time, the other key parameters were simulated and analyzed. Simulation results show that the trade-off between the breakdown voltage and the on-resistance is significantly improved due to bulk field optimization from the step doping in the P-pillar.\",\"PeriodicalId\":405565,\"journal\":{\"name\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2019.8896434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Two-dimensional quasi-SJ device with step-doping P-pillar
In this paper, a new quasi-Super Junction Lateral double-diffused-metal-oxide-semiconductor (SJ LDMOS) with step doping P-pillar was proposed. Because the depletion from the source side to the drain side is enhanced in the drift region, the doping concentrations in the P-pillar are decreased reversely to achieve charge balance and optimize the bulk electric field. The breakdown voltage and on-resistance of the new structure are investigated through the simulation, at the same time, the other key parameters were simulated and analyzed. Simulation results show that the trade-off between the breakdown voltage and the on-resistance is significantly improved due to bulk field optimization from the step doping in the P-pillar.