S. Liao, S. Devadas, K. Keutzer, S. Tjiang, Albert R. Wang
{"title":"嵌入式DSP微处理器的代码优化技术","authors":"S. Liao, S. Devadas, K. Keutzer, S. Tjiang, Albert R. Wang","doi":"10.1145/217474.217596","DOIUrl":null,"url":null,"abstract":"We address the problem of code optimization for embedded DSP microprocessors. Such processors (e.g., those in the TMS320 series) have highly irregular datapaths, and conventional code generation methods typically result in inefficient code. In this paper we formulate and solve some optimization problems that arise in code generation for processors with irregular datapaths. In addition to instruction scheduling and register allocation, we also formulate the accumulator spilling and mode selection problems that arise in DSP microprocessors. We present optimal and heuristic algorithms that determine an instruction schedule simultaneously optimizing accumulator spilling and mode selection. Experimental results are presented.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Code Optimization Techniques for Embedded DSP Microprocessors\",\"authors\":\"S. Liao, S. Devadas, K. Keutzer, S. Tjiang, Albert R. Wang\",\"doi\":\"10.1145/217474.217596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of code optimization for embedded DSP microprocessors. Such processors (e.g., those in the TMS320 series) have highly irregular datapaths, and conventional code generation methods typically result in inefficient code. In this paper we formulate and solve some optimization problems that arise in code generation for processors with irregular datapaths. In addition to instruction scheduling and register allocation, we also formulate the accumulator spilling and mode selection problems that arise in DSP microprocessors. We present optimal and heuristic algorithms that determine an instruction schedule simultaneously optimizing accumulator spilling and mode selection. Experimental results are presented.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Code Optimization Techniques for Embedded DSP Microprocessors
We address the problem of code optimization for embedded DSP microprocessors. Such processors (e.g., those in the TMS320 series) have highly irregular datapaths, and conventional code generation methods typically result in inefficient code. In this paper we formulate and solve some optimization problems that arise in code generation for processors with irregular datapaths. In addition to instruction scheduling and register allocation, we also formulate the accumulator spilling and mode selection problems that arise in DSP microprocessors. We present optimal and heuristic algorithms that determine an instruction schedule simultaneously optimizing accumulator spilling and mode selection. Experimental results are presented.