CoARC: Erasure编码Hadoop中的协作、主动恢复和故障缓存

P. Subedi, Ping Huang, Tong Liu, Joseph Moore, S. Skelton, Xubin He
{"title":"CoARC: Erasure编码Hadoop中的协作、主动恢复和故障缓存","authors":"P. Subedi, Ping Huang, Tong Liu, Joseph Moore, S. Skelton, Xubin He","doi":"10.1109/ICPP.2016.40","DOIUrl":null,"url":null,"abstract":"Cloud file systems like Hadoop have become a norm for handling big data because of the easy scaling and distributed storage layout. However, these systems are susceptible to failures and data needs to be recovered when a failure is detected. During temporary failures, MapReduce jobs or file system clients perform degraded reads and satisfy the read request. We argue that lack of sharing of the recovered data during degraded reads and recovery of only the requested data block places a heavy strain on the system's network resources and increases the job execution time. To this end, we propose CoARC (Co-operative, Aggressive Recovery and Caching), which is a new data-recovery mechanism for unavailable data during degraded reads in distributed file systems. The main idea is to recover not only the data block that was requested but also other temporarily unavailable blocks in the same strip and cache them in a separate data node. We also propose an LRF (Least Recently Failed) cache replacement algorithm for such a kind of recovery caches. We also show that CoARC significantly reduces the network usage and job runtime in erasure coded Hadoop.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CoARC: Co-operative, Aggressive Recovery and Caching for Failures in Erasure Coded Hadoop\",\"authors\":\"P. Subedi, Ping Huang, Tong Liu, Joseph Moore, S. Skelton, Xubin He\",\"doi\":\"10.1109/ICPP.2016.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud file systems like Hadoop have become a norm for handling big data because of the easy scaling and distributed storage layout. However, these systems are susceptible to failures and data needs to be recovered when a failure is detected. During temporary failures, MapReduce jobs or file system clients perform degraded reads and satisfy the read request. We argue that lack of sharing of the recovered data during degraded reads and recovery of only the requested data block places a heavy strain on the system's network resources and increases the job execution time. To this end, we propose CoARC (Co-operative, Aggressive Recovery and Caching), which is a new data-recovery mechanism for unavailable data during degraded reads in distributed file systems. The main idea is to recover not only the data block that was requested but also other temporarily unavailable blocks in the same strip and cache them in a separate data node. We also propose an LRF (Least Recently Failed) cache replacement algorithm for such a kind of recovery caches. We also show that CoARC significantly reduces the network usage and job runtime in erasure coded Hadoop.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于易于扩展和分布式存储布局,像Hadoop这样的云文件系统已经成为处理大数据的标准。但是,这些系统容易发生故障,并且在检测到故障时需要恢复数据。在临时故障期间,MapReduce作业或文件系统客户端执行降级读操作,满足读请求。我们认为,在降级读取和仅恢复请求的数据块期间,缺乏恢复数据的共享会对系统的网络资源造成沉重的压力,并增加作业的执行时间。为此,我们提出了CoARC (cooperative, Aggressive Recovery and Caching),这是分布式文件系统在降级读取期间不可用数据的一种新的数据恢复机制。其主要思想是不仅恢复请求的数据块,而且恢复同一条带中其他暂时不可用的块,并将它们缓存在单独的数据节点中。针对这类恢复缓存,我们还提出了一种LRF (Least Recently Failed)缓存替换算法。我们还表明,CoARC显著减少了擦除编码Hadoop中的网络使用和作业运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoARC: Co-operative, Aggressive Recovery and Caching for Failures in Erasure Coded Hadoop
Cloud file systems like Hadoop have become a norm for handling big data because of the easy scaling and distributed storage layout. However, these systems are susceptible to failures and data needs to be recovered when a failure is detected. During temporary failures, MapReduce jobs or file system clients perform degraded reads and satisfy the read request. We argue that lack of sharing of the recovered data during degraded reads and recovery of only the requested data block places a heavy strain on the system's network resources and increases the job execution time. To this end, we propose CoARC (Co-operative, Aggressive Recovery and Caching), which is a new data-recovery mechanism for unavailable data during degraded reads in distributed file systems. The main idea is to recover not only the data block that was requested but also other temporarily unavailable blocks in the same strip and cache them in a separate data node. We also propose an LRF (Least Recently Failed) cache replacement algorithm for such a kind of recovery caches. We also show that CoARC significantly reduces the network usage and job runtime in erasure coded Hadoop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel k-Means++ for Multiple Shared-Memory Architectures RCHC: A Holistic Runtime System for Concurrent Heterogeneous Computing Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs Improving RAID Performance Using an Endurable SSD Cache PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1