基于傅立叶分解方法的心算任务分类

Binish Fatimah, A. Javali, Haaris Ansar, B. Harshitha, Hemant Kumar
{"title":"基于傅立叶分解方法的心算任务分类","authors":"Binish Fatimah, A. Javali, Haaris Ansar, B. Harshitha, Hemant Kumar","doi":"10.1109/ICCSP48568.2020.9182149","DOIUrl":null,"url":null,"abstract":"Solving an arithmetic problem is a complex task which involves fact retrieval, memory, sequencing and decision making. Automatic detection of such an activity from EEG signals will help in understanding of brain response to these cognitive tasks. In this work, we propose a mental arithmetic task detection algorithm from a single lead EEG signal. Fourier Decomposition method is used to decompose the signal into M uniform sub-bands and features, like energy, entropy, and variance, are computed from each of these sub-bands. Kruskal-Wallis method has been used to select only the statistically relevant features. These selected features are, then, used to classify the given EEG dataset into two classes using support vector machine with cubic kernel. To validate the efficacy of the proposed algorithm, simulation results are presented using dataset available on MIT PhysioNet, titled EEG during mental arithmetic task.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mental Arithmetic Task Classification using Fourier Decomposition Method\",\"authors\":\"Binish Fatimah, A. Javali, Haaris Ansar, B. Harshitha, Hemant Kumar\",\"doi\":\"10.1109/ICCSP48568.2020.9182149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving an arithmetic problem is a complex task which involves fact retrieval, memory, sequencing and decision making. Automatic detection of such an activity from EEG signals will help in understanding of brain response to these cognitive tasks. In this work, we propose a mental arithmetic task detection algorithm from a single lead EEG signal. Fourier Decomposition method is used to decompose the signal into M uniform sub-bands and features, like energy, entropy, and variance, are computed from each of these sub-bands. Kruskal-Wallis method has been used to select only the statistically relevant features. These selected features are, then, used to classify the given EEG dataset into two classes using support vector machine with cubic kernel. To validate the efficacy of the proposed algorithm, simulation results are presented using dataset available on MIT PhysioNet, titled EEG during mental arithmetic task.\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

求解算术问题是一项复杂的任务,涉及事实检索、记忆、排序和决策。从脑电图信号中自动检测这种活动将有助于理解大脑对这些认知任务的反应。在这项工作中,我们提出了一种基于单导联脑电图信号的心算任务检测算法。采用傅里叶分解方法将信号分解为M个均匀的子带,并从每个子带中计算能量、熵和方差等特征。使用Kruskal-Wallis方法只选择统计相关的特征。然后,使用三次核支持向量机将给定的EEG数据集分为两类。为了验证该算法的有效性,利用MIT PhysioNet上的数据集“心算任务中的脑电图”给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mental Arithmetic Task Classification using Fourier Decomposition Method
Solving an arithmetic problem is a complex task which involves fact retrieval, memory, sequencing and decision making. Automatic detection of such an activity from EEG signals will help in understanding of brain response to these cognitive tasks. In this work, we propose a mental arithmetic task detection algorithm from a single lead EEG signal. Fourier Decomposition method is used to decompose the signal into M uniform sub-bands and features, like energy, entropy, and variance, are computed from each of these sub-bands. Kruskal-Wallis method has been used to select only the statistically relevant features. These selected features are, then, used to classify the given EEG dataset into two classes using support vector machine with cubic kernel. To validate the efficacy of the proposed algorithm, simulation results are presented using dataset available on MIT PhysioNet, titled EEG during mental arithmetic task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1