高分辨率地震频率和相位属性分析技术的应用

Jiang Renqi, J. Castagna, Wu Jian
{"title":"高分辨率地震频率和相位属性分析技术的应用","authors":"Jiang Renqi, J. Castagna, Wu Jian","doi":"10.21285/2686-9993-2022-45-4-324-344","DOIUrl":null,"url":null,"abstract":"Seismic prospecting for oil and gas exploration and development is limited by seismic data resolution. Improving the accuracy of quantitative interpretation of seismic data in thin layers, thereby identifying effective reservoirs and delineating favorable areas, can be a key factor for successful exploration and development. Historically, the limit of seismic resolution is usually assumed to be about 1/4 wavelength of the dominant frequency of the data in the formation of interest. Constrained seismic reflectivity inversion can resolve thinner layers than this assumed limit. This leads to a series of highresolution quantitative interpretation methods and techniques have been developed. Case studies in carbonates, clastic, and unconventional reservoirs indicate that the application of quantitative interpretation techniques such as high-resolution seismic frequency and phase attribute analysis can resolve and allow/or allow quantitative estimation of rock and fluid properties in such seismically thin layers. Band recovery using high resolution seismic processing technology can greatly improve the ability to recognize geological details such as thin layers, faults, and karst caves. Multiscale fault detection technology can effectively detect small-scale faults in addition to more readily recognized large-scale faults. Based on traditional seismic amplitude information, high-resolution spectral decomposition and phase decomposition technology expands seismic attribute analysis to the frequency and phase dimensions, boosting the interpretable geological information content of the seismic data including subsurface geological characteristics and hydrocarbon potential and thereby improving the reliability of seismic interpretation. These technologies, based on high-resolution quantitative interpretation techniques, make the identification of effective reservoirs more efficient and accurate.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of high-resolution seismic frequency and phase attribute analysis techniques\",\"authors\":\"Jiang Renqi, J. Castagna, Wu Jian\",\"doi\":\"10.21285/2686-9993-2022-45-4-324-344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic prospecting for oil and gas exploration and development is limited by seismic data resolution. Improving the accuracy of quantitative interpretation of seismic data in thin layers, thereby identifying effective reservoirs and delineating favorable areas, can be a key factor for successful exploration and development. Historically, the limit of seismic resolution is usually assumed to be about 1/4 wavelength of the dominant frequency of the data in the formation of interest. Constrained seismic reflectivity inversion can resolve thinner layers than this assumed limit. This leads to a series of highresolution quantitative interpretation methods and techniques have been developed. Case studies in carbonates, clastic, and unconventional reservoirs indicate that the application of quantitative interpretation techniques such as high-resolution seismic frequency and phase attribute analysis can resolve and allow/or allow quantitative estimation of rock and fluid properties in such seismically thin layers. Band recovery using high resolution seismic processing technology can greatly improve the ability to recognize geological details such as thin layers, faults, and karst caves. Multiscale fault detection technology can effectively detect small-scale faults in addition to more readily recognized large-scale faults. Based on traditional seismic amplitude information, high-resolution spectral decomposition and phase decomposition technology expands seismic attribute analysis to the frequency and phase dimensions, boosting the interpretable geological information content of the seismic data including subsurface geological characteristics and hydrocarbon potential and thereby improving the reliability of seismic interpretation. These technologies, based on high-resolution quantitative interpretation techniques, make the identification of effective reservoirs more efficient and accurate.\",\"PeriodicalId\":128080,\"journal\":{\"name\":\"Earth sciences and subsoil use\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth sciences and subsoil use\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21285/2686-9993-2022-45-4-324-344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2022-45-4-324-344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油气勘探开发的地震勘探受到地震资料分辨率的限制。提高薄层地震资料定量解释的准确性,从而识别有效储层并圈定有利区域,是成功勘探开发的关键因素。从历史上看,地震分辨率的极限通常被认为是感兴趣地层中数据主频率的1/4波长。约束地震反射率反演可以解析比这一假定极限更薄的层。这导致了一系列高分辨率定量解释方法和技术的发展。对碳酸盐岩、碎屑岩和非常规储层的案例研究表明,定量解释技术的应用,如高分辨率地震频率和相位属性分析,可以解决并允许对这些地震薄层的岩石和流体性质进行定量估计。利用高分辨率地震处理技术进行波段恢复,可以大大提高对薄层、断层、溶洞等地质细节的识别能力。多尺度故障检测技术除了更容易识别的大尺度故障外,还能有效地检测小尺度故障。高分辨率谱分解相分解技术在传统地震振幅信息的基础上,将地震属性分析扩展到频率和相位维度,增加了地震资料的可解释地质信息内容,包括地下地质特征和油气潜力,从而提高了地震解释的可靠性。这些技术以高分辨率定量解释技术为基础,使有效储层的识别更加高效和准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications of high-resolution seismic frequency and phase attribute analysis techniques
Seismic prospecting for oil and gas exploration and development is limited by seismic data resolution. Improving the accuracy of quantitative interpretation of seismic data in thin layers, thereby identifying effective reservoirs and delineating favorable areas, can be a key factor for successful exploration and development. Historically, the limit of seismic resolution is usually assumed to be about 1/4 wavelength of the dominant frequency of the data in the formation of interest. Constrained seismic reflectivity inversion can resolve thinner layers than this assumed limit. This leads to a series of highresolution quantitative interpretation methods and techniques have been developed. Case studies in carbonates, clastic, and unconventional reservoirs indicate that the application of quantitative interpretation techniques such as high-resolution seismic frequency and phase attribute analysis can resolve and allow/or allow quantitative estimation of rock and fluid properties in such seismically thin layers. Band recovery using high resolution seismic processing technology can greatly improve the ability to recognize geological details such as thin layers, faults, and karst caves. Multiscale fault detection technology can effectively detect small-scale faults in addition to more readily recognized large-scale faults. Based on traditional seismic amplitude information, high-resolution spectral decomposition and phase decomposition technology expands seismic attribute analysis to the frequency and phase dimensions, boosting the interpretable geological information content of the seismic data including subsurface geological characteristics and hydrocarbon potential and thereby improving the reliability of seismic interpretation. These technologies, based on high-resolution quantitative interpretation techniques, make the identification of effective reservoirs more efficient and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role and significance of geological heterogeneity in the formation of limestone productivity in the Famennian stage of the South Tatar arch Petroelastic modeling of Vereiskian and Bashkirian deposits on example of an oil field in the Republic of Tatarstan Influence of heterogeneity indicators on productivity index prediction efficiency (on example of carbonate reservoir deposits in the Ural-Volga region) Petrophysical taxa of diamond deposit of Komsomolskaya kimberlite pipe (Yakutsk diamondiferous province) Using photogrammetry to determine quarry slope stability coefficient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1