无监督域自适应的传递联合匹配

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, Philip S. Yu
{"title":"无监督域自适应的传递联合匹配","authors":"Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, Philip S. Yu","doi":"10.1109/CVPR.2014.183","DOIUrl":null,"url":null,"abstract":"Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"620","resultStr":"{\"title\":\"Transfer Joint Matching for Unsupervised Domain Adaptation\",\"authors\":\"Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, Philip S. Yu\",\"doi\":\"10.1109/CVPR.2014.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"620\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 620

摘要

视觉领域自适应是利用旧领域的标记图像学习新领域的准确分类器,在计算机视觉中显示出很好的应用价值,但仍然是一个具有挑战性的问题。大多数先前的工作都独立探索了两种学习策略:特征匹配和实例重加权。在本文中,我们表明,当领域差异很大时,这两种策略都是重要的和不可避免的。因此,我们提出了一种新的传递关节匹配(TJM)方法来对它们进行统一优化问题的建模。具体而言,TJM旨在通过有原则的降维过程,通过联合匹配特征并跨域重新加权实例来减少域差异,并构建对分布差异和不相关实例都不变的新特征表示。综合实验结果证明,TJM在跨域图像识别问题上明显优于竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Joint Matching for Unsupervised Domain Adaptation
Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Visual Knowledge Bases via Object Discovery and Segmentation Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data Parsing Occluded People L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence Generalized Pupil-centric Imaging and Analytical Calibration for a Non-frontal Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1