基于视觉里程计和全局姿态优化的动态人类环境室内定位

Raghavender Sahdev, B. Chen, John K. Tsotsos
{"title":"基于视觉里程计和全局姿态优化的动态人类环境室内定位","authors":"Raghavender Sahdev, B. Chen, John K. Tsotsos","doi":"10.1109/CRV.2018.00057","DOIUrl":null,"url":null,"abstract":"Indoor Localization is a primary task for social robots. We are particularly interested in how to solve this problem for a mobile robot using primarily vision sensors. This work examines a critical issue related to generalizing approaches for static environments to dynamic ones: (i) it considers how to deal with dynamic users in the environment that obscure landmarks that are key to safe navigation, and (ii) it considers how standard localization approaches for static environments can be augmented to deal with dynamic agents (e.g., humans). We propose an approach which integrates wheel odometry with stereo visual odometry and perform a global pose refinement to overcome previously accumulated errors due to visual and wheel odometry. We evaluate our approach through a series of controlled experiments to see how localization performance varies with increasing number of dynamic agents present in the scene.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Indoor Localization in Dynamic Human Environments Using Visual Odometry and Global Pose Refinement\",\"authors\":\"Raghavender Sahdev, B. Chen, John K. Tsotsos\",\"doi\":\"10.1109/CRV.2018.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor Localization is a primary task for social robots. We are particularly interested in how to solve this problem for a mobile robot using primarily vision sensors. This work examines a critical issue related to generalizing approaches for static environments to dynamic ones: (i) it considers how to deal with dynamic users in the environment that obscure landmarks that are key to safe navigation, and (ii) it considers how standard localization approaches for static environments can be augmented to deal with dynamic agents (e.g., humans). We propose an approach which integrates wheel odometry with stereo visual odometry and perform a global pose refinement to overcome previously accumulated errors due to visual and wheel odometry. We evaluate our approach through a series of controlled experiments to see how localization performance varies with increasing number of dynamic agents present in the scene.\",\"PeriodicalId\":281779,\"journal\":{\"name\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2018.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

室内定位是社交机器人的主要任务。我们特别感兴趣的是如何解决这个问题的移动机器人主要使用视觉传感器。这项工作研究了将静态环境的方法推广到动态环境的关键问题:(i)它考虑了如何处理环境中的动态用户,这些用户模糊了对安全导航至关重要的地标,(ii)它考虑了如何增强静态环境的标准定位方法来处理动态代理(例如,人类)。我们提出了一种将车轮里程计与立体视觉里程计相结合的方法,并进行全局姿态优化来克服先前由于视觉和车轮里程计而累积的误差。我们通过一系列控制实验来评估我们的方法,以了解本地化性能如何随着场景中动态代理数量的增加而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor Localization in Dynamic Human Environments Using Visual Odometry and Global Pose Refinement
Indoor Localization is a primary task for social robots. We are particularly interested in how to solve this problem for a mobile robot using primarily vision sensors. This work examines a critical issue related to generalizing approaches for static environments to dynamic ones: (i) it considers how to deal with dynamic users in the environment that obscure landmarks that are key to safe navigation, and (ii) it considers how standard localization approaches for static environments can be augmented to deal with dynamic agents (e.g., humans). We propose an approach which integrates wheel odometry with stereo visual odometry and perform a global pose refinement to overcome previously accumulated errors due to visual and wheel odometry. We evaluate our approach through a series of controlled experiments to see how localization performance varies with increasing number of dynamic agents present in the scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Street View Sampling: High Quality Annotation of Power Infrastructure in Rural Ontario Deep Learning-Driven Depth from Defocus via Active Multispectral Quasi-Random Projections with Complex Subpatterns De-noising of Lidar Point Clouds Corrupted by Snowfall Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks Automotive Semi-specular Surface Defect Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1