{"title":"一种最佳优先搜索算法的FOND规划和启发式函数优化解压缩大小","authors":"Frederico Messa, A. Pereira","doi":"10.1609/icaps.v33i1.27205","DOIUrl":null,"url":null,"abstract":"In this work, we study fully-observable non-deterministic (FOND) planning, which models uncertainty through actions with non-deterministic effects. We present a best-first heuristic search algorithm called AND* that searches the policy-space of the FOND task to find a solution policy. We generalize the concepts of optimality, admissibility, and goal-awareness for FOND. Using these new concepts, we formalize the concept of heuristic functions that can guide a policy-space search. We analyze different aspects of the general structure of FOND solutions to introduce and characterize a set of FOND heuristics that estimate how far a policy is from becoming a solution. One of these heuristics applies a novel insight. Guided by them AND* returns only solutions with the minimal possible number of mapped states. We systematically study these FOND heuristics theoretically and empirically. We observe that our best heuristic makes AND* much more effective than the straightforward heuristics. We believe that our work allows a better understanding of how to design algorithms and heuristics to solve FOND tasks.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Best-First Search Algorithm for FOND Planning and Heuristic Functions to Optimize Decompressed Solution Size\",\"authors\":\"Frederico Messa, A. Pereira\",\"doi\":\"10.1609/icaps.v33i1.27205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study fully-observable non-deterministic (FOND) planning, which models uncertainty through actions with non-deterministic effects. We present a best-first heuristic search algorithm called AND* that searches the policy-space of the FOND task to find a solution policy. We generalize the concepts of optimality, admissibility, and goal-awareness for FOND. Using these new concepts, we formalize the concept of heuristic functions that can guide a policy-space search. We analyze different aspects of the general structure of FOND solutions to introduce and characterize a set of FOND heuristics that estimate how far a policy is from becoming a solution. One of these heuristics applies a novel insight. Guided by them AND* returns only solutions with the minimal possible number of mapped states. We systematically study these FOND heuristics theoretically and empirically. We observe that our best heuristic makes AND* much more effective than the straightforward heuristics. We believe that our work allows a better understanding of how to design algorithms and heuristics to solve FOND tasks.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Best-First Search Algorithm for FOND Planning and Heuristic Functions to Optimize Decompressed Solution Size
In this work, we study fully-observable non-deterministic (FOND) planning, which models uncertainty through actions with non-deterministic effects. We present a best-first heuristic search algorithm called AND* that searches the policy-space of the FOND task to find a solution policy. We generalize the concepts of optimality, admissibility, and goal-awareness for FOND. Using these new concepts, we formalize the concept of heuristic functions that can guide a policy-space search. We analyze different aspects of the general structure of FOND solutions to introduce and characterize a set of FOND heuristics that estimate how far a policy is from becoming a solution. One of these heuristics applies a novel insight. Guided by them AND* returns only solutions with the minimal possible number of mapped states. We systematically study these FOND heuristics theoretically and empirically. We observe that our best heuristic makes AND* much more effective than the straightforward heuristics. We believe that our work allows a better understanding of how to design algorithms and heuristics to solve FOND tasks.