生物降解原油中类似微生物的方法提高原油采收率

T. Ketmalee, Thanachai Singhapetcharat, M. Pancharoen, Pacharaporn Navasumrit, Kittiphop Chayraksa, Naruttee Kovitkanit
{"title":"生物降解原油中类似微生物的方法提高原油采收率","authors":"T. Ketmalee, Thanachai Singhapetcharat, M. Pancharoen, Pacharaporn Navasumrit, Kittiphop Chayraksa, Naruttee Kovitkanit","doi":"10.2523/iptc-22733-ms","DOIUrl":null,"url":null,"abstract":"\n Field A is an onshore oil field in Thailand. This area contains biodegraded medium-heavy crude reservoir; 19°API oil gravity and 144 cp viscosity. Therefore, the field suffers from a low recovery factor due to high crude viscosity.\n On one hand, bacteria have exerted an adverse effect on production, on the other hand, it means that the condition of the reservoir is suitable for implementing Microbial Enhanced Oil Recovery (MEOR). The MEOR is a technology that utilizes microorganisms (mainly bacteria), to enhance oil production, especially for medium-heavy oil. By feeding nutrients to bacteria, several metabolites were produced that would be useful for oil recovery. This technique is well known for its low investment cost, hence, high return.\n The technical screening confirmed that the reservoir and fluid properties are suitable for MEOR. Consequently, sixteen core samples and three water samples were collected for indigenous bacteria analysis. Although the laboratory indicated there are countless bacterial strains in the reservoir, the nitrate-reducing biosurfactant-producing bacteria group was identified. This bacteria group belongs to the Bacillus genus which produced biosurfactant and reduced crude viscosity by long-chain hydrocarbon degradation.\n Therefore, the treatment design aimed to promote the growth of favorable bacteria and inhibit undesirable ones. Consequently, a combination of KNO3 and KH2PO4 solutions and a specialized injection scheme was tailored for this campaign.\n The pilot consisted of two candidates those were well W1 (76% water cut), and well W2 (100% water cut). The campaign was categorized into three phases, namely, 1.) baseline phase, 2.) injection and soaking phase, and 3.) production phase. Firstly, the baseline production trends of candidates were established. Secondly, KNO3 and KH2PO4 solutions were injected for one month then the wells were shut-in for another month. Lastly, the pilot wells were allowed to produce for six months to evaluate the results.\n The dead oil viscosity of well W1 was reduced from 144 cp to 72 cp which led to a 6.44 MSTB EUR gain or 1.3% RF improvement. On the other hand, the productivity of well W2, the well with 100% water cut, was not improved. This was expected due to insufficient in-situ oil saturation for a bacteria carbon source. Considering the operational aspect, there was no corrosion issue or artificial lift gas-lock problem during the pilot.","PeriodicalId":153269,"journal":{"name":"Day 2 Thu, March 02, 2023","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Like Cures Like Microbial Enhanced Oil Recovery in Biodegraded Crude\",\"authors\":\"T. Ketmalee, Thanachai Singhapetcharat, M. Pancharoen, Pacharaporn Navasumrit, Kittiphop Chayraksa, Naruttee Kovitkanit\",\"doi\":\"10.2523/iptc-22733-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Field A is an onshore oil field in Thailand. This area contains biodegraded medium-heavy crude reservoir; 19°API oil gravity and 144 cp viscosity. Therefore, the field suffers from a low recovery factor due to high crude viscosity.\\n On one hand, bacteria have exerted an adverse effect on production, on the other hand, it means that the condition of the reservoir is suitable for implementing Microbial Enhanced Oil Recovery (MEOR). The MEOR is a technology that utilizes microorganisms (mainly bacteria), to enhance oil production, especially for medium-heavy oil. By feeding nutrients to bacteria, several metabolites were produced that would be useful for oil recovery. This technique is well known for its low investment cost, hence, high return.\\n The technical screening confirmed that the reservoir and fluid properties are suitable for MEOR. Consequently, sixteen core samples and three water samples were collected for indigenous bacteria analysis. Although the laboratory indicated there are countless bacterial strains in the reservoir, the nitrate-reducing biosurfactant-producing bacteria group was identified. This bacteria group belongs to the Bacillus genus which produced biosurfactant and reduced crude viscosity by long-chain hydrocarbon degradation.\\n Therefore, the treatment design aimed to promote the growth of favorable bacteria and inhibit undesirable ones. Consequently, a combination of KNO3 and KH2PO4 solutions and a specialized injection scheme was tailored for this campaign.\\n The pilot consisted of two candidates those were well W1 (76% water cut), and well W2 (100% water cut). The campaign was categorized into three phases, namely, 1.) baseline phase, 2.) injection and soaking phase, and 3.) production phase. Firstly, the baseline production trends of candidates were established. Secondly, KNO3 and KH2PO4 solutions were injected for one month then the wells were shut-in for another month. Lastly, the pilot wells were allowed to produce for six months to evaluate the results.\\n The dead oil viscosity of well W1 was reduced from 144 cp to 72 cp which led to a 6.44 MSTB EUR gain or 1.3% RF improvement. On the other hand, the productivity of well W2, the well with 100% water cut, was not improved. This was expected due to insufficient in-situ oil saturation for a bacteria carbon source. Considering the operational aspect, there was no corrosion issue or artificial lift gas-lock problem during the pilot.\",\"PeriodicalId\":153269,\"journal\":{\"name\":\"Day 2 Thu, March 02, 2023\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Thu, March 02, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22733-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, March 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22733-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

A油田是泰国的一个陆上油田。本区含生物降解中重质原油储层;API油度19°,粘度144 cp。因此,由于原油粘度高,该油田的采收率很低。一方面,细菌对生产产生了不利影响,另一方面,这意味着该油藏的条件适合实施微生物提高采收率(MEOR)。MEOR是一种利用微生物(主要是细菌)来提高石油产量的技术,特别是对于中稠油。通过将营养物喂给细菌,产生了几种对采油有用的代谢物。该技术以其低投资成本,高回报而闻名。技术筛选结果表明,储层和流体性质适合进行MEOR。因此,采集了16个岩心样品和3个水样进行本地细菌分析。虽然实验室表明水库中有无数的细菌菌株,但确定了硝酸盐还原生物表面活性剂生产细菌群。该菌群属于芽孢杆菌属,主要生产生物表面活性剂,并通过降解长链烃降低原油粘度。因此,处理设计旨在促进有益菌的生长,抑制有害菌的生长。因此,针对该活动,为其量身定制了KNO3和KH2PO4溶液的组合以及专门的注入方案。该试验包括两个候选井,分别是W1井(含水率76%)和W2井(含水率100%)。该活动分为三个阶段,即1)基线阶段,2)注入和浸泡阶段,以及3)生产阶段。首先,建立候选人的基线生产趋势;然后,注入KNO3和KH2PO4溶液一个月,然后再关井一个月。最后,试验井进行了6个月的生产,以评估效果。W1井的死油粘度从144cp降至72cp,收益6.44 MSTB EUR, RF提高1.3%。另一方面,W2井(含水率100%的井)的产能没有得到提高。这是由于细菌碳源的原位油饱和度不足所导致的。考虑到操作方面的问题,在试航期间没有出现腐蚀问题或人工举升气锁问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Like Cures Like Microbial Enhanced Oil Recovery in Biodegraded Crude
Field A is an onshore oil field in Thailand. This area contains biodegraded medium-heavy crude reservoir; 19°API oil gravity and 144 cp viscosity. Therefore, the field suffers from a low recovery factor due to high crude viscosity. On one hand, bacteria have exerted an adverse effect on production, on the other hand, it means that the condition of the reservoir is suitable for implementing Microbial Enhanced Oil Recovery (MEOR). The MEOR is a technology that utilizes microorganisms (mainly bacteria), to enhance oil production, especially for medium-heavy oil. By feeding nutrients to bacteria, several metabolites were produced that would be useful for oil recovery. This technique is well known for its low investment cost, hence, high return. The technical screening confirmed that the reservoir and fluid properties are suitable for MEOR. Consequently, sixteen core samples and three water samples were collected for indigenous bacteria analysis. Although the laboratory indicated there are countless bacterial strains in the reservoir, the nitrate-reducing biosurfactant-producing bacteria group was identified. This bacteria group belongs to the Bacillus genus which produced biosurfactant and reduced crude viscosity by long-chain hydrocarbon degradation. Therefore, the treatment design aimed to promote the growth of favorable bacteria and inhibit undesirable ones. Consequently, a combination of KNO3 and KH2PO4 solutions and a specialized injection scheme was tailored for this campaign. The pilot consisted of two candidates those were well W1 (76% water cut), and well W2 (100% water cut). The campaign was categorized into three phases, namely, 1.) baseline phase, 2.) injection and soaking phase, and 3.) production phase. Firstly, the baseline production trends of candidates were established. Secondly, KNO3 and KH2PO4 solutions were injected for one month then the wells were shut-in for another month. Lastly, the pilot wells were allowed to produce for six months to evaluate the results. The dead oil viscosity of well W1 was reduced from 144 cp to 72 cp which led to a 6.44 MSTB EUR gain or 1.3% RF improvement. On the other hand, the productivity of well W2, the well with 100% water cut, was not improved. This was expected due to insufficient in-situ oil saturation for a bacteria carbon source. Considering the operational aspect, there was no corrosion issue or artificial lift gas-lock problem during the pilot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancement of Open Hole Gravel Pack and Zonal Isolation with Selective Intelligent Completion in Deepwater Malaysia Reaching Beyond the Limit, the Furthest Step Out S Shape Wells in Deep Gas Well Project Application and Performance Monitoring of Compound Air Plasma Lightning Rejection System Malaysia's First Use of Subsea Release Plug System for Dual Barrier Offline Cementing (DBOC) Across Hydrocarbon Section Helps Streamline Activities Drilling Weak Formations in Rumaila Field in Southern Iraq — Modelling Shear Failure Using Numerical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1