基于dcgan的医学图像增强提高ELM分类性能

Rando, N. A. Setiawan, A. E. Permanasari, R. Rulaningtyas, A. B. Suksmono, I. S. Sitanggang
{"title":"基于dcgan的医学图像增强提高ELM分类性能","authors":"Rando, N. A. Setiawan, A. E. Permanasari, R. Rulaningtyas, A. B. Suksmono, I. S. Sitanggang","doi":"10.1109/COMNETSAT56033.2022.9994559","DOIUrl":null,"url":null,"abstract":"Cervical cancer is one of the deadliest diseases in women. One of the cervical cancer screening methods is pap smear method. However, using a pap smear method to detect cervical cancer takes a long time for a pathologist to diagnose. Hence, a rapid development of medical computerization for early detection to get the results quickly is needed. This paper proposes synthetic data augmentation by using Deep Convolutional Generative Adversarial Network (DCGAN) to increase number of pap smear samples in dataset. Gray Level Co-occurrence Matrix (GLCM) is employed to extract features from dataset. Classification of 3 classes which are Adenocarcinoma, High-Grade Squamous Intraepithelial Lesion (HSIL), and Squamous Cell Carcinoma (SCC) is conducted using Extreme Learning Machine (ELM). The result shows that the addition of synthetic data improves the performance of ELM with the accuracy of 90%. This accuracy is better than the accuracy of ELM using only the original dataset which is 85%.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DCGAN-based Medical Image Augmentation to Improve ELM Classification Performance\",\"authors\":\"Rando, N. A. Setiawan, A. E. Permanasari, R. Rulaningtyas, A. B. Suksmono, I. S. Sitanggang\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical cancer is one of the deadliest diseases in women. One of the cervical cancer screening methods is pap smear method. However, using a pap smear method to detect cervical cancer takes a long time for a pathologist to diagnose. Hence, a rapid development of medical computerization for early detection to get the results quickly is needed. This paper proposes synthetic data augmentation by using Deep Convolutional Generative Adversarial Network (DCGAN) to increase number of pap smear samples in dataset. Gray Level Co-occurrence Matrix (GLCM) is employed to extract features from dataset. Classification of 3 classes which are Adenocarcinoma, High-Grade Squamous Intraepithelial Lesion (HSIL), and Squamous Cell Carcinoma (SCC) is conducted using Extreme Learning Machine (ELM). The result shows that the addition of synthetic data improves the performance of ELM with the accuracy of 90%. This accuracy is better than the accuracy of ELM using only the original dataset which is 85%.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

宫颈癌是女性最致命的疾病之一。子宫颈抹片检查是子宫颈癌筛查方法之一。然而,使用巴氏涂片法检测子宫颈癌需要病理学家花费很长时间来诊断。因此,需要迅速发展医疗计算机,以便及早发现并迅速得到结果。本文提出了一种基于深度卷积生成对抗网络(DCGAN)的合成数据增强方法,以增加数据集中的子宫颈抹片样本数量。采用灰度共生矩阵(GLCM)对数据集进行特征提取。使用极限学习机(ELM)对腺癌、高级别鳞状上皮内病变(HSIL)和鳞状细胞癌(SCC) 3类进行分类。结果表明,合成数据的加入提高了ELM的性能,准确率达到90%。该准确率优于仅使用原始数据集的ELM准确率(85%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCGAN-based Medical Image Augmentation to Improve ELM Classification Performance
Cervical cancer is one of the deadliest diseases in women. One of the cervical cancer screening methods is pap smear method. However, using a pap smear method to detect cervical cancer takes a long time for a pathologist to diagnose. Hence, a rapid development of medical computerization for early detection to get the results quickly is needed. This paper proposes synthetic data augmentation by using Deep Convolutional Generative Adversarial Network (DCGAN) to increase number of pap smear samples in dataset. Gray Level Co-occurrence Matrix (GLCM) is employed to extract features from dataset. Classification of 3 classes which are Adenocarcinoma, High-Grade Squamous Intraepithelial Lesion (HSIL), and Squamous Cell Carcinoma (SCC) is conducted using Extreme Learning Machine (ELM). The result shows that the addition of synthetic data improves the performance of ELM with the accuracy of 90%. This accuracy is better than the accuracy of ELM using only the original dataset which is 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Small-Scale Temperature Forecasting System using Time Series Models Applied in Ho Chi Minh City Clickbait Detection for Internet News Title with Deep Learning Feed Forward New Approach of Ensemble Method to Improve Performance of IDS using S-SDN Classifier Design and Implementation of On-Body Textile Antenna for Bird Tracking at 2.4 GHz Performance analysis of FBMC-PAM systems in frequency-selective Rayleigh fading channels in the presence of phase error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1