基于熵的k-Means和k-Medoids聚类特征选择

M. Dhar, S. M. Nahid Hasan, Tahsin Rahaman Otushi, Musharrat Khan
{"title":"基于熵的k-Means和k-Medoids聚类特征选择","authors":"M. Dhar, S. M. Nahid Hasan, Tahsin Rahaman Otushi, Musharrat Khan","doi":"10.1109/ICRCICN50933.2020.9296186","DOIUrl":null,"url":null,"abstract":"Clustering method splits a large dataset into smaller subsets, where each subset is called a cluster. Every cluster has the same characteristics and each cluster is different from all other clusters. The most common clustering algorithms are the k-Means clustering algorithm and the k-Medoids clustering algorithm. Clustering of high-dimensional dataset may become difficult. To overcome the problem, dimesion of the dataset is reduced. In the present work, we reduce dimension of a dataset by selecting suitable subset of features using entropy-based method. We calculate entropy using both Euclidean and Manhattan distances. We experiment with three widely used datasets from the Machine Learning Repository of the University of California, Irvine (UCI). From the results of experimentation, we can conclude that our approach produces higher clustering accuracies than those of previous $works$.","PeriodicalId":138966,"journal":{"name":"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Entropy-Based Feature Selection for Data Clustering Using k-Means and k-Medoids Algorithms\",\"authors\":\"M. Dhar, S. M. Nahid Hasan, Tahsin Rahaman Otushi, Musharrat Khan\",\"doi\":\"10.1109/ICRCICN50933.2020.9296186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering method splits a large dataset into smaller subsets, where each subset is called a cluster. Every cluster has the same characteristics and each cluster is different from all other clusters. The most common clustering algorithms are the k-Means clustering algorithm and the k-Medoids clustering algorithm. Clustering of high-dimensional dataset may become difficult. To overcome the problem, dimesion of the dataset is reduced. In the present work, we reduce dimension of a dataset by selecting suitable subset of features using entropy-based method. We calculate entropy using both Euclidean and Manhattan distances. We experiment with three widely used datasets from the Machine Learning Repository of the University of California, Irvine (UCI). From the results of experimentation, we can conclude that our approach produces higher clustering accuracies than those of previous $works$.\",\"PeriodicalId\":138966,\"journal\":{\"name\":\"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN50933.2020.9296186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN50933.2020.9296186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

聚类方法将一个大的数据集分成更小的子集,每个子集称为一个簇。每个集群都具有相同的特征,并且每个集群都不同于所有其他集群。最常见的聚类算法是k-Means聚类算法和k-Medoids聚类算法。高维数据集的聚类可能会变得困难。为了克服这个问题,对数据集进行降维。在本工作中,我们使用基于熵的方法选择合适的特征子集来降低数据集的维数。我们使用欧几里得距离和曼哈顿距离来计算熵。我们使用来自加州大学欧文分校(UCI)机器学习存储库的三个广泛使用的数据集进行实验。从实验结果中,我们可以得出结论,我们的方法比以前的$works$产生更高的聚类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy-Based Feature Selection for Data Clustering Using k-Means and k-Medoids Algorithms
Clustering method splits a large dataset into smaller subsets, where each subset is called a cluster. Every cluster has the same characteristics and each cluster is different from all other clusters. The most common clustering algorithms are the k-Means clustering algorithm and the k-Medoids clustering algorithm. Clustering of high-dimensional dataset may become difficult. To overcome the problem, dimesion of the dataset is reduced. In the present work, we reduce dimension of a dataset by selecting suitable subset of features using entropy-based method. We calculate entropy using both Euclidean and Manhattan distances. We experiment with three widely used datasets from the Machine Learning Repository of the University of California, Irvine (UCI). From the results of experimentation, we can conclude that our approach produces higher clustering accuracies than those of previous $works$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Twitter Hate Speech Detection using Stacked Weighted Ensemble (SWE) Model Automatic Traffic Accident Detection System Using ResNet and SVM A Multilingual Decision Support System for early detection of Diabetes using Machine Learning approach: Case study for Rural Indian people A Study and Analysis on Various Types of Agricultural Drones and its Applications Resiliency Analysis of ONOS and Opendaylight SDN Controllers Against Switch and Link Failures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1