未知输入饱和倒立摆系统的神经网络解耦滑模控制

Tang Xiaoqing, Chen Qiang
{"title":"未知输入饱和倒立摆系统的神经网络解耦滑模控制","authors":"Tang Xiaoqing, Chen Qiang","doi":"10.1109/ICISCE.2015.191","DOIUrl":null,"url":null,"abstract":"In this paper, a neural-network decoupled sliding-mode control (NNDSMC) scheme is proposed for inverted pendulum system with unknown input saturation. The input saturation is approximated by a smooth affine function according to the mean-value theorem. By decoupling the whole inverted pendulum system into two second-order subsystems, two sliding manifolds are designed for each subsystem, in which the first sliding manifold includes an intermediate variable related to the second one. Finally, a nonsingular terminal sliding-mode control is employed for both subsystems by using a simple sigmoid neural network to approximate the unknown system nonlinearity. Simulations show the effectiveness of the presented method.","PeriodicalId":356250,"journal":{"name":"2015 2nd International Conference on Information Science and Control Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural-Network Decoupled Sliding-Mode Control for Inverted Pendulum System with Unknown Input Saturation\",\"authors\":\"Tang Xiaoqing, Chen Qiang\",\"doi\":\"10.1109/ICISCE.2015.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a neural-network decoupled sliding-mode control (NNDSMC) scheme is proposed for inverted pendulum system with unknown input saturation. The input saturation is approximated by a smooth affine function according to the mean-value theorem. By decoupling the whole inverted pendulum system into two second-order subsystems, two sliding manifolds are designed for each subsystem, in which the first sliding manifold includes an intermediate variable related to the second one. Finally, a nonsingular terminal sliding-mode control is employed for both subsystems by using a simple sigmoid neural network to approximate the unknown system nonlinearity. Simulations show the effectiveness of the presented method.\",\"PeriodicalId\":356250,\"journal\":{\"name\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2015.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Information Science and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2015.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对输入饱和未知的倒立摆系统,提出了一种神经网络解耦滑模控制方案。根据中值定理,用光滑仿射函数逼近输入饱和。通过将整个倒立摆系统解耦为两个二阶子系统,为每个子系统设计两个滑动流形,其中第一个滑动流形包含一个与第二个滑动流形相关的中间变量。最后,利用简单的s型神经网络对两个子系统进行非奇异终端滑模控制,逼近系统的未知非线性。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural-Network Decoupled Sliding-Mode Control for Inverted Pendulum System with Unknown Input Saturation
In this paper, a neural-network decoupled sliding-mode control (NNDSMC) scheme is proposed for inverted pendulum system with unknown input saturation. The input saturation is approximated by a smooth affine function according to the mean-value theorem. By decoupling the whole inverted pendulum system into two second-order subsystems, two sliding manifolds are designed for each subsystem, in which the first sliding manifold includes an intermediate variable related to the second one. Finally, a nonsingular terminal sliding-mode control is employed for both subsystems by using a simple sigmoid neural network to approximate the unknown system nonlinearity. Simulations show the effectiveness of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research of Fast FCM Vehicle Image Segmenting Algorithm Based on Space Constraint FPGA Implementations of Cube Neutral Key Bits Analysis on Block Cipher EPCBC New Results on the Hardness of ElGamal and RSA Bits Based on Binary Expansions Modeling and Analysis of Information Theft Trojan Based on Stochastic Game Nets Fuzzy Neural Network Control of the Garbage Incinerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1