变换域前向后向LMS自适应滤波器及其应用

A. Ogunfunmi, C. Pham
{"title":"变换域前向后向LMS自适应滤波器及其应用","authors":"A. Ogunfunmi, C. Pham","doi":"10.1109/PACRIM.1991.160838","DOIUrl":null,"url":null,"abstract":"The authors present the transform-domain forward-backward least-mean-squares (LMS) (TFBLMS) adaptive algorithm, its properties, and applications. The authors demonstrate that the TFBLMS adaptive line enhancer (ALE) gives significantly improved convergence speed for various applications with colored noise inputs and same level of reduced misadjustment as the forward-backward LMS (FBLMS) ALE for a given convergence factor (adaptive step size). The authors examine the impacts of the backward prediction error and forward prediction error individually on the total misadjustment in both the FBLMS and TFBLMS algorithms. The choice of a suitable transform is discussed as an implementation issue for the TFBLMS algorithm.<<ETX>>","PeriodicalId":289986,"journal":{"name":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The transform-domain forward-backward LMS adaptive filter with applications\",\"authors\":\"A. Ogunfunmi, C. Pham\",\"doi\":\"10.1109/PACRIM.1991.160838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present the transform-domain forward-backward least-mean-squares (LMS) (TFBLMS) adaptive algorithm, its properties, and applications. The authors demonstrate that the TFBLMS adaptive line enhancer (ALE) gives significantly improved convergence speed for various applications with colored noise inputs and same level of reduced misadjustment as the forward-backward LMS (FBLMS) ALE for a given convergence factor (adaptive step size). The authors examine the impacts of the backward prediction error and forward prediction error individually on the total misadjustment in both the FBLMS and TFBLMS algorithms. The choice of a suitable transform is discussed as an implementation issue for the TFBLMS algorithm.<<ETX>>\",\"PeriodicalId\":289986,\"journal\":{\"name\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1991.160838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1991.160838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了变换域前向-后向最小均方(LMS) (TFBLMS)自适应算法及其性质和应用。作者证明,对于具有彩色噪声输入的各种应用,TFBLMS自适应线增强器(ALE)具有显着提高的收敛速度,并且对于给定的收敛因子(自适应步长),与前向向后LMS (FBLMS) ALE相同水平的减少失调。作者分别考察了后向预测误差和前向预测误差对FBLMS和TFBLMS算法总失调的影响。本文讨论了如何选择合适的变换作为实现TFBLMS算法的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The transform-domain forward-backward LMS adaptive filter with applications
The authors present the transform-domain forward-backward least-mean-squares (LMS) (TFBLMS) adaptive algorithm, its properties, and applications. The authors demonstrate that the TFBLMS adaptive line enhancer (ALE) gives significantly improved convergence speed for various applications with colored noise inputs and same level of reduced misadjustment as the forward-backward LMS (FBLMS) ALE for a given convergence factor (adaptive step size). The authors examine the impacts of the backward prediction error and forward prediction error individually on the total misadjustment in both the FBLMS and TFBLMS algorithms. The choice of a suitable transform is discussed as an implementation issue for the TFBLMS algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systolic array implementation of 2-D finite memory filters Adaptive signal-subspace processing based on first-order perturbation analysis Suppression of narrow-band interference and multipath by spread-spectrum receiver using decision-feedback filters An LU factorization algorithm for parallel supercomputers with memory hierarchies DEDIP: a user-friendly environment for digital image processing algorithm development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1