使用优化技术快速准确地识别子电路

N. Rubanov
{"title":"使用优化技术快速准确地识别子电路","authors":"N. Rubanov","doi":"10.1109/SCS.2003.1226950","DOIUrl":null,"url":null,"abstract":"The subcircuit identification (SI) is a task of recognition of instances of small subcircuits in a larger circuit. SI program are important components of CAD tools for the simulation, verification, and testing of ICs. Modern IC designs, first, contain millions of the nets and devices, and, second, thousands of subcircuits. The conventional SI algorithms based on the graph state-space search techniques are computationally demanding and may require long runtime for such ICs. In this paper, we develop an optimization-based graph recognition method for solving the SI problem. This method combines the self annealing optimization technique and two concepts from the pattern recognition theory, namely, the error propagation and the soft (delayed) decision making. In contrast to the search-based algorithms our method allows extremely fast simultaneous finding of all subcircuit instances. The experimental results show that it recognizes all the instances orders of magnitude faster than the search-oriented techniques.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast and accurate identifying subcircuits using an optimization based technique\",\"authors\":\"N. Rubanov\",\"doi\":\"10.1109/SCS.2003.1226950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subcircuit identification (SI) is a task of recognition of instances of small subcircuits in a larger circuit. SI program are important components of CAD tools for the simulation, verification, and testing of ICs. Modern IC designs, first, contain millions of the nets and devices, and, second, thousands of subcircuits. The conventional SI algorithms based on the graph state-space search techniques are computationally demanding and may require long runtime for such ICs. In this paper, we develop an optimization-based graph recognition method for solving the SI problem. This method combines the self annealing optimization technique and two concepts from the pattern recognition theory, namely, the error propagation and the soft (delayed) decision making. In contrast to the search-based algorithms our method allows extremely fast simultaneous finding of all subcircuit instances. The experimental results show that it recognizes all the instances orders of magnitude faster than the search-oriented techniques.\",\"PeriodicalId\":375963,\"journal\":{\"name\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCS.2003.1226950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1226950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

子电路识别(SI)是一种在较大电路中识别小子电路实例的任务。SI程序是集成电路仿真、验证和测试的CAD工具的重要组成部分。现代集成电路设计首先包含数以百万计的网络和器件,其次包含成千上万的子电路。基于图状态空间搜索技术的传统SI算法计算量大,可能需要较长的运行时间。在本文中,我们开发了一种基于优化的图形识别方法来解决SI问题。该方法结合了自退火优化技术和模式识别理论中的两个概念,即误差传播和软(延迟)决策。与基于搜索的算法相比,我们的方法可以非常快速地同时找到所有子电路实例。实验结果表明,该方法对所有实例的识别速度比面向搜索的方法快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and accurate identifying subcircuits using an optimization based technique
The subcircuit identification (SI) is a task of recognition of instances of small subcircuits in a larger circuit. SI program are important components of CAD tools for the simulation, verification, and testing of ICs. Modern IC designs, first, contain millions of the nets and devices, and, second, thousands of subcircuits. The conventional SI algorithms based on the graph state-space search techniques are computationally demanding and may require long runtime for such ICs. In this paper, we develop an optimization-based graph recognition method for solving the SI problem. This method combines the self annealing optimization technique and two concepts from the pattern recognition theory, namely, the error propagation and the soft (delayed) decision making. In contrast to the search-based algorithms our method allows extremely fast simultaneous finding of all subcircuit instances. The experimental results show that it recognizes all the instances orders of magnitude faster than the search-oriented techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm based dynamic channel assignment for cellular radio networks Voltage controlled integrators/differentiators using current feedback amplifier A low noise-high counting rate readout system for X-ray imaging applications Implementation of 3D-DCT based video encoder/decoder system Periodic chaotic spreading sequences with better correlation properties than conventional sequences - BER performances analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1