L. Hudeley, O. Traon, T. Perrier, R. Lévy, J. Guerard, A. Bosseboeuf
{"title":"平面傅科摆硅陀螺","authors":"L. Hudeley, O. Traon, T. Perrier, R. Lévy, J. Guerard, A. Bosseboeuf","doi":"10.1109/INERTIAL53425.2022.9787532","DOIUrl":null,"url":null,"abstract":"This paper presents theoretical performances of a novel silicon MEMS Coriolis Vibratory Gyroscope (CVG). Since whole-angle (WA) operation is promising to reach navigation grade, this work proposes an innovative cell design to obtain isotropic in-plane vibration of a central mass, as a Foucault pendulum. This design, based on original link elements between the outer frame and the central mass allows the in plane central mass vibration without energy losses in the outer frame. A FEM calculation shows very low energy losses in the outer frame, of the order of 10-7 of the total energy contained in the resonator. Thus, for a device under vacuum only the thermoelastic losses will limit the Q-factor estimated above 8.5 × 105. We predict with our size design of 2.5 mm × 2.5 mm × 80 µm an angular random walk (ARW) of 0.007 °/√h in close loop configuration. The operating frequency is about 8 kHz and the first eigen mode is above 4.7 kHz, making the device robust to harsh vibratory environments.","PeriodicalId":435781,"journal":{"name":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar Foucault pendulum silicon gyro\",\"authors\":\"L. Hudeley, O. Traon, T. Perrier, R. Lévy, J. Guerard, A. Bosseboeuf\",\"doi\":\"10.1109/INERTIAL53425.2022.9787532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents theoretical performances of a novel silicon MEMS Coriolis Vibratory Gyroscope (CVG). Since whole-angle (WA) operation is promising to reach navigation grade, this work proposes an innovative cell design to obtain isotropic in-plane vibration of a central mass, as a Foucault pendulum. This design, based on original link elements between the outer frame and the central mass allows the in plane central mass vibration without energy losses in the outer frame. A FEM calculation shows very low energy losses in the outer frame, of the order of 10-7 of the total energy contained in the resonator. Thus, for a device under vacuum only the thermoelastic losses will limit the Q-factor estimated above 8.5 × 105. We predict with our size design of 2.5 mm × 2.5 mm × 80 µm an angular random walk (ARW) of 0.007 °/√h in close loop configuration. The operating frequency is about 8 kHz and the first eigen mode is above 4.7 kHz, making the device robust to harsh vibratory environments.\",\"PeriodicalId\":435781,\"journal\":{\"name\":\"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIAL53425.2022.9787532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL53425.2022.9787532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
介绍了一种新型硅MEMS科里奥利振动陀螺仪(CVG)的理论性能。由于全角(WA)操作有望达到导航级,本工作提出了一种创新的单元设计,以获得中心质量的平面内各向同性振动,如福柯摆。该设计基于原有的外框架与中心质量之间的连接单元,允许中心质量在平面内振动而不造成外框架的能量损失。有限元计算表明,外框架的能量损失非常低,约为谐振器总能量的10-7。因此,对于真空下的器件,只有热弹性损失将限制估计在8.5 × 105以上的q因子。我们预测我们的尺寸设计为2.5 mm × 2.5 mm × 80µm,在闭环配置下角随机游走(ARW)为0.007°/√h。工作频率约为8khz,第一本征模式高于4.7 kHz,使设备在恶劣的振动环境中具有鲁棒性。
This paper presents theoretical performances of a novel silicon MEMS Coriolis Vibratory Gyroscope (CVG). Since whole-angle (WA) operation is promising to reach navigation grade, this work proposes an innovative cell design to obtain isotropic in-plane vibration of a central mass, as a Foucault pendulum. This design, based on original link elements between the outer frame and the central mass allows the in plane central mass vibration without energy losses in the outer frame. A FEM calculation shows very low energy losses in the outer frame, of the order of 10-7 of the total energy contained in the resonator. Thus, for a device under vacuum only the thermoelastic losses will limit the Q-factor estimated above 8.5 × 105. We predict with our size design of 2.5 mm × 2.5 mm × 80 µm an angular random walk (ARW) of 0.007 °/√h in close loop configuration. The operating frequency is about 8 kHz and the first eigen mode is above 4.7 kHz, making the device robust to harsh vibratory environments.