基于标准的疲劳试验数据交换技术

T. Austin, Lianshan Lin, T. Métais
{"title":"基于标准的疲劳试验数据交换技术","authors":"T. Austin, Lianshan Lin, T. Métais","doi":"10.1115/PVP2018-84610","DOIUrl":null,"url":null,"abstract":"Fatigue testing campaigns are a common feature in the design and operation of advanced engineering systems in the aerospace and power generation sectors. The resulting data are typically of a high inherent technical and financial value. Presently, these data are typically transferred between departments and companies by way of ad-hoc solutions reliant on obsolete or proprietary technologies, including CSV files, MS Excel® files, and PDFs. In these circumstances there is significant potential for data loss, inconsistency, and error. To address these shortcomings, there is a need for a systematic means of transferring data between different digital systems. With this in mind, a series of CEN Workshops on engineering materials data have taken place with a view to developing technologies for representing and exchanging engineering materials data. Most recently, a CEN Workshop on the topic of fatigue test data has delivered data formats derived from the ISO 12106 standard for axial strain-controlled fatigue testing. This paper describes the methodology for developing the data formats and demonstrates their use in the scope of the INCEFA-PLUS project on increasing safety in nuclear power plants by covering gaps in environmental fatigue assessment.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Standards-Based Technologies for Exchanging Fatigue Test Data\",\"authors\":\"T. Austin, Lianshan Lin, T. Métais\",\"doi\":\"10.1115/PVP2018-84610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue testing campaigns are a common feature in the design and operation of advanced engineering systems in the aerospace and power generation sectors. The resulting data are typically of a high inherent technical and financial value. Presently, these data are typically transferred between departments and companies by way of ad-hoc solutions reliant on obsolete or proprietary technologies, including CSV files, MS Excel® files, and PDFs. In these circumstances there is significant potential for data loss, inconsistency, and error. To address these shortcomings, there is a need for a systematic means of transferring data between different digital systems. With this in mind, a series of CEN Workshops on engineering materials data have taken place with a view to developing technologies for representing and exchanging engineering materials data. Most recently, a CEN Workshop on the topic of fatigue test data has delivered data formats derived from the ISO 12106 standard for axial strain-controlled fatigue testing. This paper describes the methodology for developing the data formats and demonstrates their use in the scope of the INCEFA-PLUS project on increasing safety in nuclear power plants by covering gaps in environmental fatigue assessment.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在航空航天和发电领域的先进工程系统的设计和运行中,疲劳测试活动是一个常见的特征。结果数据通常具有很高的内在技术和财务价值。目前,这些数据通常通过依赖过时或专有技术的临时解决方案在部门和公司之间传输,包括CSV文件、MS Excel®文件和pdf文件。在这种情况下,数据丢失、不一致和错误的可能性很大。为了解决这些缺点,需要在不同的数字系统之间传输数据的系统方法。考虑到这一点,CEN举办了一系列关于工程材料数据的研讨会,旨在开发表示和交换工程材料数据的技术。最近,CEN关于疲劳试验数据主题的研讨会提供了源自ISO 12106轴向应变控制疲劳试验标准的数据格式。本文描述了开发数据格式的方法,并说明了它们在INCEFA-PLUS项目范围内的用途,该项目旨在通过弥补环境疲劳评估方面的差距来提高核电站的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Standards-Based Technologies for Exchanging Fatigue Test Data
Fatigue testing campaigns are a common feature in the design and operation of advanced engineering systems in the aerospace and power generation sectors. The resulting data are typically of a high inherent technical and financial value. Presently, these data are typically transferred between departments and companies by way of ad-hoc solutions reliant on obsolete or proprietary technologies, including CSV files, MS Excel® files, and PDFs. In these circumstances there is significant potential for data loss, inconsistency, and error. To address these shortcomings, there is a need for a systematic means of transferring data between different digital systems. With this in mind, a series of CEN Workshops on engineering materials data have taken place with a view to developing technologies for representing and exchanging engineering materials data. Most recently, a CEN Workshop on the topic of fatigue test data has delivered data formats derived from the ISO 12106 standard for axial strain-controlled fatigue testing. This paper describes the methodology for developing the data formats and demonstrates their use in the scope of the INCEFA-PLUS project on increasing safety in nuclear power plants by covering gaps in environmental fatigue assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1