Sumit Kumar, Ashish Meshram, A. Astro, J. Querol, T. Schlichter, G. Casati, T. Heyn, F. Völk, R. Schwarz, A. Knopp, Paulo Marques, Luis Pereira, R. Magueta, A. Kapovits, F. Kaltenberger
{"title":"OpenAirInterface作为5G-NTN研究和实验平台","authors":"Sumit Kumar, Ashish Meshram, A. Astro, J. Querol, T. Schlichter, G. Casati, T. Heyn, F. Völk, R. Schwarz, A. Knopp, Paulo Marques, Luis Pereira, R. Magueta, A. Kapovits, F. Kaltenberger","doi":"10.1109/FNWF55208.2022.00094","DOIUrl":null,"url":null,"abstract":"Technical advancements and experimental works for the integration of 5G and Non-Terrestrial Networks (NTN) have gained significant traction over the past few years. NTN components have been officially included in the 5G ecosystem by 3GPP in the latest Release-17. 5G-NTN research is ongoing and it is desirable to have a platform that facilitates quick prototyping of the proof-of-concept methods. OpenAirInterface(OAI) is an open-source experimental yet 3GPP standard-compliant Software Defined Radio (SDR) based protocol stack that has been widely known for implementing 4G/5G technologies. Due to its proven capabilities and flexibility, OAI is currently in the developmental process of integrating adaptations for the 5G-NTN. In this work, we discuss the peculiar features of OAI which are shaping it towards becoming a preferred tool for research and experimentation related to 5G-NTN. We provide details of completed/ongoing 5G-NTN projects leveraging OAI to achieve their objectives. In particular, we discuss 5G-GOA and 5G-LEO where critical adaptations in OAI are being done to support 5G-NTN use-cases. Such adaptations enable direct-access between UE and gNB via transparent payload Geostationary (5G-GOA) and Non-geostationary satellites (5G-LEO). Both projects have closely followed 3GPP discussions over 5G-NTN and the adaptations are compliant with the currently frozen 3GPP Release-17. OAI adaptations from both projects will be merged into the main development branch of OAI. We also provide a future roadmap of OAI towards 5G-NTN development. We believe that the pioneering steps taken in the course of the aforementioned projects will establish OAI as a preferred tool for 5G-NTN research and experimentations.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"OpenAirInterface as a platform for 5G-NTN Research and Experimentation\",\"authors\":\"Sumit Kumar, Ashish Meshram, A. Astro, J. Querol, T. Schlichter, G. Casati, T. Heyn, F. Völk, R. Schwarz, A. Knopp, Paulo Marques, Luis Pereira, R. Magueta, A. Kapovits, F. Kaltenberger\",\"doi\":\"10.1109/FNWF55208.2022.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technical advancements and experimental works for the integration of 5G and Non-Terrestrial Networks (NTN) have gained significant traction over the past few years. NTN components have been officially included in the 5G ecosystem by 3GPP in the latest Release-17. 5G-NTN research is ongoing and it is desirable to have a platform that facilitates quick prototyping of the proof-of-concept methods. OpenAirInterface(OAI) is an open-source experimental yet 3GPP standard-compliant Software Defined Radio (SDR) based protocol stack that has been widely known for implementing 4G/5G technologies. Due to its proven capabilities and flexibility, OAI is currently in the developmental process of integrating adaptations for the 5G-NTN. In this work, we discuss the peculiar features of OAI which are shaping it towards becoming a preferred tool for research and experimentation related to 5G-NTN. We provide details of completed/ongoing 5G-NTN projects leveraging OAI to achieve their objectives. In particular, we discuss 5G-GOA and 5G-LEO where critical adaptations in OAI are being done to support 5G-NTN use-cases. Such adaptations enable direct-access between UE and gNB via transparent payload Geostationary (5G-GOA) and Non-geostationary satellites (5G-LEO). Both projects have closely followed 3GPP discussions over 5G-NTN and the adaptations are compliant with the currently frozen 3GPP Release-17. OAI adaptations from both projects will be merged into the main development branch of OAI. We also provide a future roadmap of OAI towards 5G-NTN development. We believe that the pioneering steps taken in the course of the aforementioned projects will establish OAI as a preferred tool for 5G-NTN research and experimentations.\",\"PeriodicalId\":300165,\"journal\":{\"name\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FNWF55208.2022.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OpenAirInterface as a platform for 5G-NTN Research and Experimentation
Technical advancements and experimental works for the integration of 5G and Non-Terrestrial Networks (NTN) have gained significant traction over the past few years. NTN components have been officially included in the 5G ecosystem by 3GPP in the latest Release-17. 5G-NTN research is ongoing and it is desirable to have a platform that facilitates quick prototyping of the proof-of-concept methods. OpenAirInterface(OAI) is an open-source experimental yet 3GPP standard-compliant Software Defined Radio (SDR) based protocol stack that has been widely known for implementing 4G/5G technologies. Due to its proven capabilities and flexibility, OAI is currently in the developmental process of integrating adaptations for the 5G-NTN. In this work, we discuss the peculiar features of OAI which are shaping it towards becoming a preferred tool for research and experimentation related to 5G-NTN. We provide details of completed/ongoing 5G-NTN projects leveraging OAI to achieve their objectives. In particular, we discuss 5G-GOA and 5G-LEO where critical adaptations in OAI are being done to support 5G-NTN use-cases. Such adaptations enable direct-access between UE and gNB via transparent payload Geostationary (5G-GOA) and Non-geostationary satellites (5G-LEO). Both projects have closely followed 3GPP discussions over 5G-NTN and the adaptations are compliant with the currently frozen 3GPP Release-17. OAI adaptations from both projects will be merged into the main development branch of OAI. We also provide a future roadmap of OAI towards 5G-NTN development. We believe that the pioneering steps taken in the course of the aforementioned projects will establish OAI as a preferred tool for 5G-NTN research and experimentations.