{"title":"加权直方图SRP-PHAT算法的多说话人到达方向估计","authors":"E. Hadad, S. Gannot","doi":"10.1109/ICSEE.2018.8646206","DOIUrl":null,"url":null,"abstract":"A direction of arrival (DOA) estimator for concurrent speakers in a reverberant environment is presented. The DOA estimation task is formulated in the short-time Fourier transform (STFT) in two stages. In the first stage, a single narrow-band DOA per time-frequency (T-F) is selected, since the speech sources are assumed to exhibit disjoint activity in the STFT domain. The narrow-band DOA is obtained as the maximum of the narrow-band steered response power phase transform (SRP-PHAT) localization spectrum at that T-F bin. In addition, for each narrow-band DOA, a quality measure is calculated, which provides the confidence in the estimated decision. In the second stage, the wide-band localization spectrum is calculated using a weighted histogram of the narrow-band DOAs with the quality measures as weight. Finally, the wide-band DOA estimation is obtained by selecting the peaks in the wide-band localization spectrum. The results of our experimental study demonstrate the benefit of the proposed algorithm as compared to the wide-band SRP-PHAT algorithm in a reverberant environment.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Speaker Direction of Arrival Estimation using SRP-PHAT Algorithm with a Weighted Histogram\",\"authors\":\"E. Hadad, S. Gannot\",\"doi\":\"10.1109/ICSEE.2018.8646206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A direction of arrival (DOA) estimator for concurrent speakers in a reverberant environment is presented. The DOA estimation task is formulated in the short-time Fourier transform (STFT) in two stages. In the first stage, a single narrow-band DOA per time-frequency (T-F) is selected, since the speech sources are assumed to exhibit disjoint activity in the STFT domain. The narrow-band DOA is obtained as the maximum of the narrow-band steered response power phase transform (SRP-PHAT) localization spectrum at that T-F bin. In addition, for each narrow-band DOA, a quality measure is calculated, which provides the confidence in the estimated decision. In the second stage, the wide-band localization spectrum is calculated using a weighted histogram of the narrow-band DOAs with the quality measures as weight. Finally, the wide-band DOA estimation is obtained by selecting the peaks in the wide-band localization spectrum. The results of our experimental study demonstrate the benefit of the proposed algorithm as compared to the wide-band SRP-PHAT algorithm in a reverberant environment.\",\"PeriodicalId\":254455,\"journal\":{\"name\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEE.2018.8646206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Speaker Direction of Arrival Estimation using SRP-PHAT Algorithm with a Weighted Histogram
A direction of arrival (DOA) estimator for concurrent speakers in a reverberant environment is presented. The DOA estimation task is formulated in the short-time Fourier transform (STFT) in two stages. In the first stage, a single narrow-band DOA per time-frequency (T-F) is selected, since the speech sources are assumed to exhibit disjoint activity in the STFT domain. The narrow-band DOA is obtained as the maximum of the narrow-band steered response power phase transform (SRP-PHAT) localization spectrum at that T-F bin. In addition, for each narrow-band DOA, a quality measure is calculated, which provides the confidence in the estimated decision. In the second stage, the wide-band localization spectrum is calculated using a weighted histogram of the narrow-band DOAs with the quality measures as weight. Finally, the wide-band DOA estimation is obtained by selecting the peaks in the wide-band localization spectrum. The results of our experimental study demonstrate the benefit of the proposed algorithm as compared to the wide-band SRP-PHAT algorithm in a reverberant environment.