CellDefectNet:一种基于电致发光的光伏电池缺陷检测的机器设计关注聚光镜网络

Carol Xu, M. Famouri, Gautam Bathla, Saeejith Nair, M. Shafiee, Alexander Wong
{"title":"CellDefectNet:一种基于电致发光的光伏电池缺陷检测的机器设计关注聚光镜网络","authors":"Carol Xu, M. Famouri, Gautam Bathla, Saeejith Nair, M. Shafiee, Alexander Wong","doi":"10.1109/CRV55824.2022.00036","DOIUrl":null,"url":null,"abstract":"Photovoltaic cells are electronic devices that convert light energy to electricity, forming the backbone of solar energy harvesting systems. An essential step in the manufacturing process for photovoltaic cells is visual quality inspection using electroluminescence imaging to identify defects such as cracks, finger interruptions, and broken cells. A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors, which is extremely time consuming, laborious, and prone to human error. While deep learning approaches holds great potential to automating this inspection, the hardware resource-constrained manufac-turing scenario makes it challenging for deploying complex deep neural network architectures. In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration specifically for electroluminesence-based photovoltaic cell defect detection on the edge. We demonstrate the efficacy of CellDetectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery, achieving an accuracy of $\\sim 86.3\\%$ while possessing just 410K parameters $(\\sim 13\\times$ lower than EfficientNet-B0, respectively) and $\\sim 115\\mathrm{M}$ FLOPs $(\\sim 12\\times$ lower than EfficientNet-B0) and $\\sim 13\\times$ faster on an ARM Cortex A-72 embedded processor when compared to EfficientNet-B0.","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CellDefectNet: A Machine-designed Attention Condenser Network for Electroluminescence-based Photovoltaic Cell Defect Inspection\",\"authors\":\"Carol Xu, M. Famouri, Gautam Bathla, Saeejith Nair, M. Shafiee, Alexander Wong\",\"doi\":\"10.1109/CRV55824.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic cells are electronic devices that convert light energy to electricity, forming the backbone of solar energy harvesting systems. An essential step in the manufacturing process for photovoltaic cells is visual quality inspection using electroluminescence imaging to identify defects such as cracks, finger interruptions, and broken cells. A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors, which is extremely time consuming, laborious, and prone to human error. While deep learning approaches holds great potential to automating this inspection, the hardware resource-constrained manufac-turing scenario makes it challenging for deploying complex deep neural network architectures. In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration specifically for electroluminesence-based photovoltaic cell defect detection on the edge. We demonstrate the efficacy of CellDetectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery, achieving an accuracy of $\\\\sim 86.3\\\\%$ while possessing just 410K parameters $(\\\\sim 13\\\\times$ lower than EfficientNet-B0, respectively) and $\\\\sim 115\\\\mathrm{M}$ FLOPs $(\\\\sim 12\\\\times$ lower than EfficientNet-B0) and $\\\\sim 13\\\\times$ faster on an ARM Cortex A-72 embedded processor when compared to EfficientNet-B0.\",\"PeriodicalId\":131142,\"journal\":{\"name\":\"2022 19th Conference on Robots and Vision (CRV)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th Conference on Robots and Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV55824.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

光伏电池是一种将光能转化为电能的电子设备,是太阳能收集系统的支柱。光伏电池制造过程中的一个重要步骤是使用电致发光成像进行视觉质量检查,以识别裂纹,手指中断和损坏的电池等缺陷。光伏电池目视检测是目前光伏电池目视检测行业面临的一大挑战,主要是由人工检测人员手工完成,费时费力,容易出现人为错误。虽然深度学习方法在自动化检测方面具有巨大潜力,但硬件资源受限的制造场景使得部署复杂的深度神经网络架构具有挑战性。在这项工作中,我们介绍了CellDefectNet,这是一个高效的注意力聚光网络,通过机器驱动的设计探索设计,专门用于基于电致发光的光伏电池边缘缺陷检测。我们在一个基准数据集上展示了CellDetectNet的有效性,该数据集由使用电发光图像捕获的各种光伏电池组成,在仅具有410K参数$(分别比EfficientNet-B0低13倍)和$\sim 115\mathrm{M}$ FLOPs $(比EfficientNet-B0低12倍)的情况下,实现了$\sim 86.3% $的精度,并且与效率相比,在ARM Cortex a -72嵌入式处理器上的$\sim快13倍$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CellDefectNet: A Machine-designed Attention Condenser Network for Electroluminescence-based Photovoltaic Cell Defect Inspection
Photovoltaic cells are electronic devices that convert light energy to electricity, forming the backbone of solar energy harvesting systems. An essential step in the manufacturing process for photovoltaic cells is visual quality inspection using electroluminescence imaging to identify defects such as cracks, finger interruptions, and broken cells. A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors, which is extremely time consuming, laborious, and prone to human error. While deep learning approaches holds great potential to automating this inspection, the hardware resource-constrained manufac-turing scenario makes it challenging for deploying complex deep neural network architectures. In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration specifically for electroluminesence-based photovoltaic cell defect detection on the edge. We demonstrate the efficacy of CellDetectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery, achieving an accuracy of $\sim 86.3\%$ while possessing just 410K parameters $(\sim 13\times$ lower than EfficientNet-B0, respectively) and $\sim 115\mathrm{M}$ FLOPs $(\sim 12\times$ lower than EfficientNet-B0) and $\sim 13\times$ faster on an ARM Cortex A-72 embedded processor when compared to EfficientNet-B0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A View Invariant Human Action Recognition System for Noisy Inputs TemporalNet: Real-time 2D-3D Video Object Detection Occluded Text Detection and Recognition in the Wild Anomaly Detection with Adversarially Learned Perturbations of Latent Space Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1