N. Soliman, M. Fouda, L. Said, A. Madian, A. Radwan
{"title":"基于记忆电阻器的三元比较器单元","authors":"N. Soliman, M. Fouda, L. Said, A. Madian, A. Radwan","doi":"10.1109/ICM.2018.8704010","DOIUrl":null,"url":null,"abstract":"This paper proposes a new design for ternary logic comparator unit based on memristive threshold logic concept. To provide high-performance design, integrating memristor and Carbon Nano-Tube Field-Effect Transistor, CNTFET, is used. A comparison with other related work is presented to discuss performance aspects. It shows that performance has been improved by 75% compared with the other related work. Therefore, the proposed design is very promising to build high-performance full ternary ALU memristor-based unit.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Memristor-CNTFET based Ternary Comparator unit\",\"authors\":\"N. Soliman, M. Fouda, L. Said, A. Madian, A. Radwan\",\"doi\":\"10.1109/ICM.2018.8704010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new design for ternary logic comparator unit based on memristive threshold logic concept. To provide high-performance design, integrating memristor and Carbon Nano-Tube Field-Effect Transistor, CNTFET, is used. A comparison with other related work is presented to discuss performance aspects. It shows that performance has been improved by 75% compared with the other related work. Therefore, the proposed design is very promising to build high-performance full ternary ALU memristor-based unit.\",\"PeriodicalId\":305356,\"journal\":{\"name\":\"2018 30th International Conference on Microelectronics (ICM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2018.8704010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes a new design for ternary logic comparator unit based on memristive threshold logic concept. To provide high-performance design, integrating memristor and Carbon Nano-Tube Field-Effect Transistor, CNTFET, is used. A comparison with other related work is presented to discuss performance aspects. It shows that performance has been improved by 75% compared with the other related work. Therefore, the proposed design is very promising to build high-performance full ternary ALU memristor-based unit.