从图像中筛选敏感数据

Stefan Postavaru, Ionut-MihaIta Plesea
{"title":"从图像中筛选敏感数据","authors":"Stefan Postavaru, Ionut-MihaIta Plesea","doi":"10.1109/SYNASC.2016.073","DOIUrl":null,"url":null,"abstract":"In the recent years, the vast volume of digitalimages available enabled a large range of learning methods tobe applicable, while making human input obsolete for manytasks. In this paper, we are addressing the problem of removingprivate information from images. When confronted with arelatively big number of pictures to be made public, one mayfind the task of manual editing out sensitive regions to beunfeasible. Ideally, we would like to use a machine learningapproach to automate this task. We implement and comparedifferent architectures based on convolutional neural networks, with generative and discriminative models competing in anadversarial fashion.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Censoring Sensitive Data from Images\",\"authors\":\"Stefan Postavaru, Ionut-MihaIta Plesea\",\"doi\":\"10.1109/SYNASC.2016.073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent years, the vast volume of digitalimages available enabled a large range of learning methods tobe applicable, while making human input obsolete for manytasks. In this paper, we are addressing the problem of removingprivate information from images. When confronted with arelatively big number of pictures to be made public, one mayfind the task of manual editing out sensitive regions to beunfeasible. Ideally, we would like to use a machine learningapproach to automate this task. We implement and comparedifferent architectures based on convolutional neural networks, with generative and discriminative models competing in anadversarial fashion.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,大量可用的数字图像使得大量的学习方法得以应用,同时在许多任务中,人工输入已经过时。在本文中,我们正在解决从图像中删除私有信息的问题。当面对相对大量的图片要公开时,人们可能会发现手工编辑敏感区域的任务是不可行的。理想情况下,我们希望使用机器学习方法来自动完成这项任务。我们实现并比较了基于卷积神经网络的不同架构,生成和判别模型以对抗的方式竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Censoring Sensitive Data from Images
In the recent years, the vast volume of digitalimages available enabled a large range of learning methods tobe applicable, while making human input obsolete for manytasks. In this paper, we are addressing the problem of removingprivate information from images. When confronted with arelatively big number of pictures to be made public, one mayfind the task of manual editing out sensitive regions to beunfeasible. Ideally, we would like to use a machine learningapproach to automate this task. We implement and comparedifferent architectures based on convolutional neural networks, with generative and discriminative models competing in anadversarial fashion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1