{"title":"发酵与日粮多样性:发酵芒果(Mangifera Indica L)浆粉的生化与功能特性","authors":"Jasper O.G. Elechi","doi":"10.55147/efse.1181022","DOIUrl":null,"url":null,"abstract":"Processing of plant foods has been in practice over a long period of time for various reasons; ranging from optimization of product quality, such as improvement in flavour, texture, nutrient density, and bioavailability as well as reduction in viscosity, bulkiness, and antinutritional factors/toxins or for improvement of functional properties for use in other food systems. Indigenous food fermentation is one of the oldest ‘food biotechnological processes’ dependent on the biological activity of microorganisms from which the development of fermented foods is achieved in the cultural history of human beings. Mango (Mangifera indica) is a tropical fruit plant that contains high levels of nutrients, fibre, macronutrients, micronutrients, and minerals as well as abundant bioactive compounds such as antioxidants and polyphenols reported to be an alternative to enhance body immunity. This study is to process fermented mango pulp flour and the effects of the period of fermentation time on the chemical composition and selected functional properties of mango pulp flours were examined. The fermentation time ranged from 0-72 h with Flour of the unfermented (0hr) Mango serving as control. Fermentation for 24hr to 72hrs significantly increased (p","PeriodicalId":150194,"journal":{"name":"European Food Science and Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermentation and Diet Diversity: Biochemical and Functional Properties of Fermented Mango (Mangifera Indica L) Pulp Flour\",\"authors\":\"Jasper O.G. Elechi\",\"doi\":\"10.55147/efse.1181022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing of plant foods has been in practice over a long period of time for various reasons; ranging from optimization of product quality, such as improvement in flavour, texture, nutrient density, and bioavailability as well as reduction in viscosity, bulkiness, and antinutritional factors/toxins or for improvement of functional properties for use in other food systems. Indigenous food fermentation is one of the oldest ‘food biotechnological processes’ dependent on the biological activity of microorganisms from which the development of fermented foods is achieved in the cultural history of human beings. Mango (Mangifera indica) is a tropical fruit plant that contains high levels of nutrients, fibre, macronutrients, micronutrients, and minerals as well as abundant bioactive compounds such as antioxidants and polyphenols reported to be an alternative to enhance body immunity. This study is to process fermented mango pulp flour and the effects of the period of fermentation time on the chemical composition and selected functional properties of mango pulp flours were examined. The fermentation time ranged from 0-72 h with Flour of the unfermented (0hr) Mango serving as control. Fermentation for 24hr to 72hrs significantly increased (p\",\"PeriodicalId\":150194,\"journal\":{\"name\":\"European Food Science and Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Food Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55147/efse.1181022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55147/efse.1181022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fermentation and Diet Diversity: Biochemical and Functional Properties of Fermented Mango (Mangifera Indica L) Pulp Flour
Processing of plant foods has been in practice over a long period of time for various reasons; ranging from optimization of product quality, such as improvement in flavour, texture, nutrient density, and bioavailability as well as reduction in viscosity, bulkiness, and antinutritional factors/toxins or for improvement of functional properties for use in other food systems. Indigenous food fermentation is one of the oldest ‘food biotechnological processes’ dependent on the biological activity of microorganisms from which the development of fermented foods is achieved in the cultural history of human beings. Mango (Mangifera indica) is a tropical fruit plant that contains high levels of nutrients, fibre, macronutrients, micronutrients, and minerals as well as abundant bioactive compounds such as antioxidants and polyphenols reported to be an alternative to enhance body immunity. This study is to process fermented mango pulp flour and the effects of the period of fermentation time on the chemical composition and selected functional properties of mango pulp flours were examined. The fermentation time ranged from 0-72 h with Flour of the unfermented (0hr) Mango serving as control. Fermentation for 24hr to 72hrs significantly increased (p