{"title":"脉冲神经网络补偿了有机神经形态设备网络中的权重漂移","authors":"Daniel Felder, J. Linkhorst, Matthias Wessling","doi":"10.1088/2634-4386/accd90","DOIUrl":null,"url":null,"abstract":"Organic neuromorphic devices can accelerate neural networks and integrate with biological systems. Devices based on the biocompatible and conductive polymer PEDOT:PSS are fast, require low amounts of energy and perform well in crossbar simulations. However, parasitic electrochemical reactions lead to self-discharge and the fading of the learned conductance states over time. This limits a neural network’s operating time and requires complex compensation mechanisms. Spiking neural networks (SNNs) take inspiration from biology to implement local and always-on learning. We show that these SNNs can function on organic neuromorphic hardware and compensate for self-discharge by continuously relearning and reinforcing forgotten states. In this work, we use a high-resolution charge transport model to describe the behavior of organic neuromorphic devices and create a computationally efficient surrogate model. By integrating the surrogate model into a Brian 2 simulation, we can describe the behavior of SNNs on organic neuromorphic hardware. A biologically plausible two-layer network for recognizing 28×28 pixel MNIST images is trained and observed during self-discharge. The network achieves, for its size, competitive recognition results of up to 82.5%. Building a network with forgetful devices yields superior accuracy during training with 84.5% compared to ideal devices. However, trained networks without active spike-timing-dependent plasticity quickly lose their predictive performance. We show that online learning can keep the performance at a steady level close to the initial accuracy, even for idle rates of up to 90%. This performance is maintained when the output neuron’s labels are not revalidated for up to 24 h. These findings reconfirm the potential of organic neuromorphic devices for brain-inspired computing. Their biocompatibility and the demonstrated adaptability to SNNs open the path towards close integration with multi-electrode arrays, drug-delivery devices, and other bio-interfacing systems as either fully organic or hybrid organic-inorganic systems.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spiking neural networks compensate for weight drift in organic neuromorphic device networks\",\"authors\":\"Daniel Felder, J. Linkhorst, Matthias Wessling\",\"doi\":\"10.1088/2634-4386/accd90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic neuromorphic devices can accelerate neural networks and integrate with biological systems. Devices based on the biocompatible and conductive polymer PEDOT:PSS are fast, require low amounts of energy and perform well in crossbar simulations. However, parasitic electrochemical reactions lead to self-discharge and the fading of the learned conductance states over time. This limits a neural network’s operating time and requires complex compensation mechanisms. Spiking neural networks (SNNs) take inspiration from biology to implement local and always-on learning. We show that these SNNs can function on organic neuromorphic hardware and compensate for self-discharge by continuously relearning and reinforcing forgotten states. In this work, we use a high-resolution charge transport model to describe the behavior of organic neuromorphic devices and create a computationally efficient surrogate model. By integrating the surrogate model into a Brian 2 simulation, we can describe the behavior of SNNs on organic neuromorphic hardware. A biologically plausible two-layer network for recognizing 28×28 pixel MNIST images is trained and observed during self-discharge. The network achieves, for its size, competitive recognition results of up to 82.5%. Building a network with forgetful devices yields superior accuracy during training with 84.5% compared to ideal devices. However, trained networks without active spike-timing-dependent plasticity quickly lose their predictive performance. We show that online learning can keep the performance at a steady level close to the initial accuracy, even for idle rates of up to 90%. This performance is maintained when the output neuron’s labels are not revalidated for up to 24 h. These findings reconfirm the potential of organic neuromorphic devices for brain-inspired computing. Their biocompatibility and the demonstrated adaptability to SNNs open the path towards close integration with multi-electrode arrays, drug-delivery devices, and other bio-interfacing systems as either fully organic or hybrid organic-inorganic systems.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/accd90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/accd90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spiking neural networks compensate for weight drift in organic neuromorphic device networks
Organic neuromorphic devices can accelerate neural networks and integrate with biological systems. Devices based on the biocompatible and conductive polymer PEDOT:PSS are fast, require low amounts of energy and perform well in crossbar simulations. However, parasitic electrochemical reactions lead to self-discharge and the fading of the learned conductance states over time. This limits a neural network’s operating time and requires complex compensation mechanisms. Spiking neural networks (SNNs) take inspiration from biology to implement local and always-on learning. We show that these SNNs can function on organic neuromorphic hardware and compensate for self-discharge by continuously relearning and reinforcing forgotten states. In this work, we use a high-resolution charge transport model to describe the behavior of organic neuromorphic devices and create a computationally efficient surrogate model. By integrating the surrogate model into a Brian 2 simulation, we can describe the behavior of SNNs on organic neuromorphic hardware. A biologically plausible two-layer network for recognizing 28×28 pixel MNIST images is trained and observed during self-discharge. The network achieves, for its size, competitive recognition results of up to 82.5%. Building a network with forgetful devices yields superior accuracy during training with 84.5% compared to ideal devices. However, trained networks without active spike-timing-dependent plasticity quickly lose their predictive performance. We show that online learning can keep the performance at a steady level close to the initial accuracy, even for idle rates of up to 90%. This performance is maintained when the output neuron’s labels are not revalidated for up to 24 h. These findings reconfirm the potential of organic neuromorphic devices for brain-inspired computing. Their biocompatibility and the demonstrated adaptability to SNNs open the path towards close integration with multi-electrode arrays, drug-delivery devices, and other bio-interfacing systems as either fully organic or hybrid organic-inorganic systems.