二维超分辨距离多普勒成像在汽车雷达中的应用

Jieru Ding, Min Wang, Xinghui Wu, Zhiyi Wang
{"title":"二维超分辨距离多普勒成像在汽车雷达中的应用","authors":"Jieru Ding, Min Wang, Xinghui Wu, Zhiyi Wang","doi":"10.1109/ICSAI57119.2022.10005501","DOIUrl":null,"url":null,"abstract":"Automotive radar plays a significant role in un-manned auto-drive system, and most vehicle-mounted radars improve the angular resolution by the MIMO radar. Two-dimension (2D) fast Fourier transform (FFT) is usually used to extract the range frequency and Doppler frequency. When there is few sampling points in the observed signal, imaging results of range-Doppler rapidly deteriorates. In this paper, we exploit the sparsity of scattering points in space and the robustness of l1 norm, to finish the super-resolution imaging of range-Doppler (RD) map. l1 is employed to update the sparse result by introducing the Lagrange multiplier. Finally, the algorithm has been validated by the simulated data, and it has demonstrated the algorithm’s effectiveness.","PeriodicalId":339547,"journal":{"name":"2022 8th International Conference on Systems and Informatics (ICSAI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimension Super-resolution Range Doppler Imaging in Automotive Radar\",\"authors\":\"Jieru Ding, Min Wang, Xinghui Wu, Zhiyi Wang\",\"doi\":\"10.1109/ICSAI57119.2022.10005501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive radar plays a significant role in un-manned auto-drive system, and most vehicle-mounted radars improve the angular resolution by the MIMO radar. Two-dimension (2D) fast Fourier transform (FFT) is usually used to extract the range frequency and Doppler frequency. When there is few sampling points in the observed signal, imaging results of range-Doppler rapidly deteriorates. In this paper, we exploit the sparsity of scattering points in space and the robustness of l1 norm, to finish the super-resolution imaging of range-Doppler (RD) map. l1 is employed to update the sparse result by introducing the Lagrange multiplier. Finally, the algorithm has been validated by the simulated data, and it has demonstrated the algorithm’s effectiveness.\",\"PeriodicalId\":339547,\"journal\":{\"name\":\"2022 8th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI57119.2022.10005501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI57119.2022.10005501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汽车雷达在无人驾驶自动驾驶系统中占有重要地位,大多数车载雷达都采用MIMO雷达来提高角度分辨率。通常采用二维快速傅里叶变换(FFT)提取距离频率和多普勒频率。当观测信号中采样点较少时,距离多普勒成像结果会迅速恶化。本文利用空间散射点的稀疏性和l1范数的鲁棒性,完成了距离-多普勒(RD)地图的超分辨率成像。l1通过引入拉格朗日乘子来更新稀疏结果。最后通过仿真数据对算法进行了验证,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-dimension Super-resolution Range Doppler Imaging in Automotive Radar
Automotive radar plays a significant role in un-manned auto-drive system, and most vehicle-mounted radars improve the angular resolution by the MIMO radar. Two-dimension (2D) fast Fourier transform (FFT) is usually used to extract the range frequency and Doppler frequency. When there is few sampling points in the observed signal, imaging results of range-Doppler rapidly deteriorates. In this paper, we exploit the sparsity of scattering points in space and the robustness of l1 norm, to finish the super-resolution imaging of range-Doppler (RD) map. l1 is employed to update the sparse result by introducing the Lagrange multiplier. Finally, the algorithm has been validated by the simulated data, and it has demonstrated the algorithm’s effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-hop Knowledge Base Q&A in Integrated Energy Services Based on Intermediate Reasoning Attention Wrong Wiring Detection of Electricity Meter Based on Image Processing Perturbation Analysis Based Simulation Approach for Electricity Market Research and Investigation Promoting a Hybrid Cryptosystem System’s Security based on Fresnel lens and RSA Algorithm Customer Portrait for Metrology Institutions Based on the Machine Learning Clustering Algorithm and the RFM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1