Hamed Yazdanpanah, J. A. Apolinário, P. Diniz, Markus V. S. Lima
{"title":"10范数特征LMS算法","authors":"Hamed Yazdanpanah, J. A. Apolinário, P. Diniz, Markus V. S. Lima","doi":"10.1109/GlobalSIP.2018.8646465","DOIUrl":null,"url":null,"abstract":"A class of algorithms known as feature least-mean-square (F-LMS) has been proposed recently to exploit hidden sparsity in adaptive filter parameters. In contrast to common sparsity-aware adaptive filtering algorithms, the F-LMS algorithm detects and exploits sparsity in linear combinations of filter coefficients. Indeed, by applying a feature matrix to the adaptive filter coefficients vector, the F-LMS algorithm can reveal and exploit their hidden sparsity. However, in many cases the unknown plant to be identified contains not only hidden but also plain sparsity and the F-LMS algorithm is unable to exploit it. Therefore, we can incorporate sparsity-promoting techniques into the F-LMS algorithm in order to allow the exploitation of plain sparsity. In this paper, by utilizing the l0-norm, we propose the l0-norm F-LMS (l0-F-LMS) algorithm for sparse lowpass and sparse highpass systems. Numerical results show that the proposed algorithm outperforms the F-LMS algorithm when dealing with hidden sparsity, particularly in highly sparse systems where the convergence rate is sped up significantly.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"l0-NORM FEATURE LMS ALGORITHMS\",\"authors\":\"Hamed Yazdanpanah, J. A. Apolinário, P. Diniz, Markus V. S. Lima\",\"doi\":\"10.1109/GlobalSIP.2018.8646465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of algorithms known as feature least-mean-square (F-LMS) has been proposed recently to exploit hidden sparsity in adaptive filter parameters. In contrast to common sparsity-aware adaptive filtering algorithms, the F-LMS algorithm detects and exploits sparsity in linear combinations of filter coefficients. Indeed, by applying a feature matrix to the adaptive filter coefficients vector, the F-LMS algorithm can reveal and exploit their hidden sparsity. However, in many cases the unknown plant to be identified contains not only hidden but also plain sparsity and the F-LMS algorithm is unable to exploit it. Therefore, we can incorporate sparsity-promoting techniques into the F-LMS algorithm in order to allow the exploitation of plain sparsity. In this paper, by utilizing the l0-norm, we propose the l0-norm F-LMS (l0-F-LMS) algorithm for sparse lowpass and sparse highpass systems. Numerical results show that the proposed algorithm outperforms the F-LMS algorithm when dealing with hidden sparsity, particularly in highly sparse systems where the convergence rate is sped up significantly.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A class of algorithms known as feature least-mean-square (F-LMS) has been proposed recently to exploit hidden sparsity in adaptive filter parameters. In contrast to common sparsity-aware adaptive filtering algorithms, the F-LMS algorithm detects and exploits sparsity in linear combinations of filter coefficients. Indeed, by applying a feature matrix to the adaptive filter coefficients vector, the F-LMS algorithm can reveal and exploit their hidden sparsity. However, in many cases the unknown plant to be identified contains not only hidden but also plain sparsity and the F-LMS algorithm is unable to exploit it. Therefore, we can incorporate sparsity-promoting techniques into the F-LMS algorithm in order to allow the exploitation of plain sparsity. In this paper, by utilizing the l0-norm, we propose the l0-norm F-LMS (l0-F-LMS) algorithm for sparse lowpass and sparse highpass systems. Numerical results show that the proposed algorithm outperforms the F-LMS algorithm when dealing with hidden sparsity, particularly in highly sparse systems where the convergence rate is sped up significantly.