10范数特征LMS算法

Hamed Yazdanpanah, J. A. Apolinário, P. Diniz, Markus V. S. Lima
{"title":"10范数特征LMS算法","authors":"Hamed Yazdanpanah, J. A. Apolinário, P. Diniz, Markus V. S. Lima","doi":"10.1109/GlobalSIP.2018.8646465","DOIUrl":null,"url":null,"abstract":"A class of algorithms known as feature least-mean-square (F-LMS) has been proposed recently to exploit hidden sparsity in adaptive filter parameters. In contrast to common sparsity-aware adaptive filtering algorithms, the F-LMS algorithm detects and exploits sparsity in linear combinations of filter coefficients. Indeed, by applying a feature matrix to the adaptive filter coefficients vector, the F-LMS algorithm can reveal and exploit their hidden sparsity. However, in many cases the unknown plant to be identified contains not only hidden but also plain sparsity and the F-LMS algorithm is unable to exploit it. Therefore, we can incorporate sparsity-promoting techniques into the F-LMS algorithm in order to allow the exploitation of plain sparsity. In this paper, by utilizing the l0-norm, we propose the l0-norm F-LMS (l0-F-LMS) algorithm for sparse lowpass and sparse highpass systems. Numerical results show that the proposed algorithm outperforms the F-LMS algorithm when dealing with hidden sparsity, particularly in highly sparse systems where the convergence rate is sped up significantly.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"l0-NORM FEATURE LMS ALGORITHMS\",\"authors\":\"Hamed Yazdanpanah, J. A. Apolinário, P. Diniz, Markus V. S. Lima\",\"doi\":\"10.1109/GlobalSIP.2018.8646465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of algorithms known as feature least-mean-square (F-LMS) has been proposed recently to exploit hidden sparsity in adaptive filter parameters. In contrast to common sparsity-aware adaptive filtering algorithms, the F-LMS algorithm detects and exploits sparsity in linear combinations of filter coefficients. Indeed, by applying a feature matrix to the adaptive filter coefficients vector, the F-LMS algorithm can reveal and exploit their hidden sparsity. However, in many cases the unknown plant to be identified contains not only hidden but also plain sparsity and the F-LMS algorithm is unable to exploit it. Therefore, we can incorporate sparsity-promoting techniques into the F-LMS algorithm in order to allow the exploitation of plain sparsity. In this paper, by utilizing the l0-norm, we propose the l0-norm F-LMS (l0-F-LMS) algorithm for sparse lowpass and sparse highpass systems. Numerical results show that the proposed algorithm outperforms the F-LMS algorithm when dealing with hidden sparsity, particularly in highly sparse systems where the convergence rate is sped up significantly.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

为了利用自适应滤波器参数的隐稀疏性,最近提出了一种称为特征最小均方(F-LMS)的算法。与常见的稀疏性感知自适应滤波算法相比,F-LMS算法检测并利用滤波系数线性组合中的稀疏性。事实上,通过将特征矩阵应用于自适应滤波器系数向量,F-LMS算法可以揭示和利用其隐藏的稀疏性。然而,在许多情况下,待识别的未知植物不仅包含隐藏的稀疏性,而且包含明显的稀疏性,而F-LMS算法无法利用它。因此,我们可以将促进稀疏性的技术合并到F-LMS算法中,以便允许利用纯稀疏性。本文利用10范数,提出了稀疏低通和稀疏高通系统的10范数F-LMS (10 -F-LMS)算法。数值结果表明,该算法在处理隐稀疏性时优于F-LMS算法,特别是在高度稀疏系统中,收敛速度明显加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l0-NORM FEATURE LMS ALGORITHMS
A class of algorithms known as feature least-mean-square (F-LMS) has been proposed recently to exploit hidden sparsity in adaptive filter parameters. In contrast to common sparsity-aware adaptive filtering algorithms, the F-LMS algorithm detects and exploits sparsity in linear combinations of filter coefficients. Indeed, by applying a feature matrix to the adaptive filter coefficients vector, the F-LMS algorithm can reveal and exploit their hidden sparsity. However, in many cases the unknown plant to be identified contains not only hidden but also plain sparsity and the F-LMS algorithm is unable to exploit it. Therefore, we can incorporate sparsity-promoting techniques into the F-LMS algorithm in order to allow the exploitation of plain sparsity. In this paper, by utilizing the l0-norm, we propose the l0-norm F-LMS (l0-F-LMS) algorithm for sparse lowpass and sparse highpass systems. Numerical results show that the proposed algorithm outperforms the F-LMS algorithm when dealing with hidden sparsity, particularly in highly sparse systems where the convergence rate is sped up significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1