基于广义零力矩点的康复辅助系统手足反力估计

Kunihiro Ogata, Hideyuki Tanaka, Y. Matsumoto
{"title":"基于广义零力矩点的康复辅助系统手足反力估计","authors":"Kunihiro Ogata, Hideyuki Tanaka, Y. Matsumoto","doi":"10.1109/HUMANOIDS.2017.8246887","DOIUrl":null,"url":null,"abstract":"Elderly individuals are likely to develop locomotive disorders such as osteoarthritis or osteoporosis. This increases the risk of falls and makes independent movement difficult. Elderly individuals should better understand walking function to extend their healthy life. We therefore propose a new method for estimating hand and foot reaction forces using only visual markers and a monocular camera. When humans contact the environment with their hands, their hand and feet positions define a convex hull. A proposed “ generalized zero moment point ” is projected on this convex hull, which is approximated as a line or plane, and the distance between this point and each contact point is calculated. Reaction forces are calculated based on the ratios of these distances. Evaluation experiments show high agreement between estimated and measured forces of both hands and feet, confirming the validity of the proposed algorithm.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating hand and foot reaction forces based on a generalized zero moment point for rehabilitation assist system\",\"authors\":\"Kunihiro Ogata, Hideyuki Tanaka, Y. Matsumoto\",\"doi\":\"10.1109/HUMANOIDS.2017.8246887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elderly individuals are likely to develop locomotive disorders such as osteoarthritis or osteoporosis. This increases the risk of falls and makes independent movement difficult. Elderly individuals should better understand walking function to extend their healthy life. We therefore propose a new method for estimating hand and foot reaction forces using only visual markers and a monocular camera. When humans contact the environment with their hands, their hand and feet positions define a convex hull. A proposed “ generalized zero moment point ” is projected on this convex hull, which is approximated as a line or plane, and the distance between this point and each contact point is calculated. Reaction forces are calculated based on the ratios of these distances. Evaluation experiments show high agreement between estimated and measured forces of both hands and feet, confirming the validity of the proposed algorithm.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

老年人很可能会出现运动障碍,如骨关节炎或骨质疏松症。这增加了跌倒的风险,使独立活动变得困难。老年人应更好地了解步行功能,以延长其健康生活。因此,我们提出了一种新的方法来估计手和脚的反作用力仅使用视觉标记和单目相机。当人类用手接触环境时,他们的手和脚的位置定义了一个凸壳。在这个凸包上投影一个建议的“广义零力矩点”,它近似为一条线或一个平面,并计算该点与每个接触点之间的距离。反作用力是根据这些距离的比值计算的。评估实验表明,估计的手和脚的力与测量的力具有很高的一致性,证实了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating hand and foot reaction forces based on a generalized zero moment point for rehabilitation assist system
Elderly individuals are likely to develop locomotive disorders such as osteoarthritis or osteoporosis. This increases the risk of falls and makes independent movement difficult. Elderly individuals should better understand walking function to extend their healthy life. We therefore propose a new method for estimating hand and foot reaction forces using only visual markers and a monocular camera. When humans contact the environment with their hands, their hand and feet positions define a convex hull. A proposed “ generalized zero moment point ” is projected on this convex hull, which is approximated as a line or plane, and the distance between this point and each contact point is calculated. Reaction forces are calculated based on the ratios of these distances. Evaluation experiments show high agreement between estimated and measured forces of both hands and feet, confirming the validity of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1