在半结构化市场中优化类似商品推荐,以最大化转化率

Y. Brovman, Marie Jacob, N. Srinivasan, Stephen Neola, D. Galron, Ryan Snyder, Paul Wang
{"title":"在半结构化市场中优化类似商品推荐,以最大化转化率","authors":"Y. Brovman, Marie Jacob, N. Srinivasan, Stephen Neola, D. Galron, Ryan Snyder, Paul Wang","doi":"10.1145/2959100.2959166","DOIUrl":null,"url":null,"abstract":"This paper tackles the problem of recommendations in eBay's large semi-structured marketplace. eBay's variable inventory and lack of structured information about listings makes traditional collaborative filtering algorithms difficult to use. We discuss how to overcome these data limitations to produce high quality recommendations in real time with a combination of a customized scalable architecture as well as a widely applicable machine learned ranking model. A pointwise ranking approach is utilized to reduce the ranking problem to a binary classification problem optimized on past user purchase behavior. We present details of a sampling strategy and feature engineering that have been critical to achieve a lift in both purchase through rate (PTR) and revenue.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Optimizing Similar Item Recommendations in a Semi-structured Marketplace to Maximize Conversion\",\"authors\":\"Y. Brovman, Marie Jacob, N. Srinivasan, Stephen Neola, D. Galron, Ryan Snyder, Paul Wang\",\"doi\":\"10.1145/2959100.2959166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the problem of recommendations in eBay's large semi-structured marketplace. eBay's variable inventory and lack of structured information about listings makes traditional collaborative filtering algorithms difficult to use. We discuss how to overcome these data limitations to produce high quality recommendations in real time with a combination of a customized scalable architecture as well as a widely applicable machine learned ranking model. A pointwise ranking approach is utilized to reduce the ranking problem to a binary classification problem optimized on past user purchase behavior. We present details of a sampling strategy and feature engineering that have been critical to achieve a lift in both purchase through rate (PTR) and revenue.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文解决了eBay大型半结构化市场中的推荐问题。eBay多变的库存和缺乏结构化的商品信息使得传统的协同过滤算法难以使用。我们讨论了如何克服这些数据限制,结合定制的可扩展架构和广泛适用的机器学习排名模型,实时生成高质量的推荐。采用逐点排序的方法,将排序问题简化为一个基于过去用户购买行为优化的二元分类问题。我们详细介绍了采样策略和特征工程,这对于提高采购完成率(PTR)和收入至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Similar Item Recommendations in a Semi-structured Marketplace to Maximize Conversion
This paper tackles the problem of recommendations in eBay's large semi-structured marketplace. eBay's variable inventory and lack of structured information about listings makes traditional collaborative filtering algorithms difficult to use. We discuss how to overcome these data limitations to produce high quality recommendations in real time with a combination of a customized scalable architecture as well as a widely applicable machine learned ranking model. A pointwise ranking approach is utilized to reduce the ranking problem to a binary classification problem optimized on past user purchase behavior. We present details of a sampling strategy and feature engineering that have been critical to achieve a lift in both purchase through rate (PTR) and revenue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1