在贝叶斯网络中寻找ϵ-Close最小参数变化

Bahar Salmani, J. Katoen
{"title":"在贝叶斯网络中寻找ϵ-Close最小参数变化","authors":"Bahar Salmani, J. Katoen","doi":"10.24963/ijcai.2023/635","DOIUrl":null,"url":null,"abstract":"This paper addresses the ε-close parameter tuning problem for Bayesian\n\nnetworks (BNs): find a minimal ε-close amendment of probability entries\n\nin a given set of (rows in) conditional probability tables that make a\n\ngiven quantitative constraint on the BN valid. Based on the\n\nstate-of-the-art “region verification” techniques for parametric Markov\n\nchains, we propose an algorithm whose capabilities go\n\nbeyond any existing techniques. Our experiments show that ε-close tuning\n\nof large BN benchmarks with up to eight parameters is feasible. In\n\nparticular, by allowing (i) varied parameters in multiple CPTs and (ii)\n\ninter-CPT parameter dependencies, we treat subclasses of parametric BNs\n\nthat have received scant attention so far.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding an ϵ-Close Minimal Variation of Parameters in Bayesian Networks\",\"authors\":\"Bahar Salmani, J. Katoen\",\"doi\":\"10.24963/ijcai.2023/635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the ε-close parameter tuning problem for Bayesian\\n\\nnetworks (BNs): find a minimal ε-close amendment of probability entries\\n\\nin a given set of (rows in) conditional probability tables that make a\\n\\ngiven quantitative constraint on the BN valid. Based on the\\n\\nstate-of-the-art “region verification” techniques for parametric Markov\\n\\nchains, we propose an algorithm whose capabilities go\\n\\nbeyond any existing techniques. Our experiments show that ε-close tuning\\n\\nof large BN benchmarks with up to eight parameters is feasible. In\\n\\nparticular, by allowing (i) varied parameters in multiple CPTs and (ii)\\n\\ninter-CPT parameter dependencies, we treat subclasses of parametric BNs\\n\\nthat have received scant attention so far.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了贝叶斯网络(BN)的ε-close参数调整问题:在给定的一组条件概率表中找到一个最小的ε-close修正,使给定的定量约束对BN有效。基于参数马尔可夫链最先进的“区域验证”技术,我们提出了一种超越任何现有技术的算法。我们的实验表明,具有多达8个参数的大型BN基准的ε-接近调谐是可行的。特别是,通过允许(i)多个cpt中的不同参数和(ii) cpt间参数依赖,我们处理了迄今为止很少受到关注的参数bns的子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding an ϵ-Close Minimal Variation of Parameters in Bayesian Networks
This paper addresses the ε-close parameter tuning problem for Bayesian networks (BNs): find a minimal ε-close amendment of probability entries in a given set of (rows in) conditional probability tables that make a given quantitative constraint on the BN valid. Based on the state-of-the-art “region verification” techniques for parametric Markov chains, we propose an algorithm whose capabilities go beyond any existing techniques. Our experiments show that ε-close tuning of large BN benchmarks with up to eight parameters is feasible. In particular, by allowing (i) varied parameters in multiple CPTs and (ii) inter-CPT parameter dependencies, we treat subclasses of parametric BNs that have received scant attention so far.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1