通过主题推荐和词嵌入探索Twitter数据集上的跨事件关系

Chung-Hong Lee, Hsin-Chang Yang, Bo-Chun Xu
{"title":"通过主题推荐和词嵌入探索Twitter数据集上的跨事件关系","authors":"Chung-Hong Lee, Hsin-Chang Yang, Bo-Chun Xu","doi":"10.1109/ICAWST.2017.8256513","DOIUrl":null,"url":null,"abstract":"The ability to compute the degree of semantic similarity of real world events represented by social data and tracking the cross-event clues on a huge collection of social messages (i.e., tweets) has proven useful for a wide variety of event-awareness applications. The developed system should be able to overcome the challenge of high redundancy in social corpus (e.g. Twitter messages) and the sparsity inherent in their short texts. In this work, we propose a method to explore implicit relations on Twitter-based detected event datasets using an online event detection and word embedding technique for event analysis. The preliminary empirical result showed that the combined framework in our system is sensible for mining more unknown knowledge about event impacts.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring cross-event relations on Twitter datasets via topic recommendation and word embedding\",\"authors\":\"Chung-Hong Lee, Hsin-Chang Yang, Bo-Chun Xu\",\"doi\":\"10.1109/ICAWST.2017.8256513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to compute the degree of semantic similarity of real world events represented by social data and tracking the cross-event clues on a huge collection of social messages (i.e., tweets) has proven useful for a wide variety of event-awareness applications. The developed system should be able to overcome the challenge of high redundancy in social corpus (e.g. Twitter messages) and the sparsity inherent in their short texts. In this work, we propose a method to explore implicit relations on Twitter-based detected event datasets using an online event detection and word embedding technique for event analysis. The preliminary empirical result showed that the combined framework in our system is sensible for mining more unknown knowledge about event impacts.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算由社交数据表示的真实世界事件的语义相似度的能力,以及跟踪大量社交消息(即tweets)上的跨事件线索的能力,已被证明对各种各样的事件感知应用程序非常有用。开发的系统应该能够克服社会语料库(例如Twitter消息)的高冗余和其短文本固有的稀疏性的挑战。在这项工作中,我们提出了一种使用在线事件检测和词嵌入技术进行事件分析的方法来探索基于twitter的检测事件数据集上的隐式关系。初步的实证结果表明,我们系统中的组合框架对于挖掘更多关于事件影响的未知知识是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring cross-event relations on Twitter datasets via topic recommendation and word embedding
The ability to compute the degree of semantic similarity of real world events represented by social data and tracking the cross-event clues on a huge collection of social messages (i.e., tweets) has proven useful for a wide variety of event-awareness applications. The developed system should be able to overcome the challenge of high redundancy in social corpus (e.g. Twitter messages) and the sparsity inherent in their short texts. In this work, we propose a method to explore implicit relations on Twitter-based detected event datasets using an online event detection and word embedding technique for event analysis. The preliminary empirical result showed that the combined framework in our system is sensible for mining more unknown knowledge about event impacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1