{"title":"应用神经网络重建系统发育树","authors":"T. Zhu, Yunpeng Cai","doi":"10.1145/3457682.3457704","DOIUrl":null,"url":null,"abstract":"Reconstruction of phylogenetic tree from biological sequences is a fundamental step in molecular biology, but it is computationally exhausting. Our goal is to use neural network to learn the heuristic strategy of phylogenetic tree reconstruction algorithm. We propose an attention model to learn heuristic strategies for constructing circular ordering related to phylogenetic trees. We use alignment-free K-mer frequency vector representation to represent biological sequences and use unlabeled sequence data sets to train attention model through reinforcement learning. Comparing with traditional methods, our approach is alignment-free and can be easily extended to large-scale data with computational efficiency. With the rapid growth of public biological sequence data, our method provides a potential way to reconstruct phylogenetic tree.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Applying Neural Network to Reconstruction of Phylogenetic Tree\",\"authors\":\"T. Zhu, Yunpeng Cai\",\"doi\":\"10.1145/3457682.3457704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction of phylogenetic tree from biological sequences is a fundamental step in molecular biology, but it is computationally exhausting. Our goal is to use neural network to learn the heuristic strategy of phylogenetic tree reconstruction algorithm. We propose an attention model to learn heuristic strategies for constructing circular ordering related to phylogenetic trees. We use alignment-free K-mer frequency vector representation to represent biological sequences and use unlabeled sequence data sets to train attention model through reinforcement learning. Comparing with traditional methods, our approach is alignment-free and can be easily extended to large-scale data with computational efficiency. With the rapid growth of public biological sequence data, our method provides a potential way to reconstruct phylogenetic tree.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying Neural Network to Reconstruction of Phylogenetic Tree
Reconstruction of phylogenetic tree from biological sequences is a fundamental step in molecular biology, but it is computationally exhausting. Our goal is to use neural network to learn the heuristic strategy of phylogenetic tree reconstruction algorithm. We propose an attention model to learn heuristic strategies for constructing circular ordering related to phylogenetic trees. We use alignment-free K-mer frequency vector representation to represent biological sequences and use unlabeled sequence data sets to train attention model through reinforcement learning. Comparing with traditional methods, our approach is alignment-free and can be easily extended to large-scale data with computational efficiency. With the rapid growth of public biological sequence data, our method provides a potential way to reconstruct phylogenetic tree.