有界引用的数据压缩

M. Banikazemi
{"title":"有界引用的数据压缩","authors":"M. Banikazemi","doi":"10.1109/DCC.2009.70","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new compression/decompression algorithm called LZB which belongs to a class of algorithms related to Lempel-Ziv (LZ). The distinguishing characteristic of LZB is that it allows decompression from arbitrary points of compressed data. This is accomplished by setting a limit on how far back a reference in compressed data can directly or indirectly point to. We enforce this limit by using a sliding \"gate.\" During the compression, we keep track of the origin of each input symbol.  The origin of a symbol is the earliest symbol in the input data that the symbol (directly or indirectly) refers to. By using this information we avoid using any reference which go beyond the gate boundary.  We modified the gzip implementation of LZ77 to implement LZB. We then compared LZB with the alternative method in which data is segmented into smaller pieces and each piece is compressed separately by using the standard gzip. The results show that LZB improves the compression ratio by 10 to 50 percent for 1024 to 128 byte segment sizes.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"LZB: Data Compression with Bounded References\",\"authors\":\"M. Banikazemi\",\"doi\":\"10.1109/DCC.2009.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new compression/decompression algorithm called LZB which belongs to a class of algorithms related to Lempel-Ziv (LZ). The distinguishing characteristic of LZB is that it allows decompression from arbitrary points of compressed data. This is accomplished by setting a limit on how far back a reference in compressed data can directly or indirectly point to. We enforce this limit by using a sliding \\\"gate.\\\" During the compression, we keep track of the origin of each input symbol.  The origin of a symbol is the earliest symbol in the input data that the symbol (directly or indirectly) refers to. By using this information we avoid using any reference which go beyond the gate boundary.  We modified the gzip implementation of LZ77 to implement LZB. We then compared LZB with the alternative method in which data is segmented into smaller pieces and each piece is compressed separately by using the standard gzip. The results show that LZB improves the compression ratio by 10 to 50 percent for 1024 to 128 byte segment sizes.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的压缩/解压缩算法LZB,它属于与Lempel-Ziv (LZ)相关的一类算法。LZB的显著特点是它允许从压缩数据的任意点进行解压缩。这是通过限制压缩数据中的引用可以直接或间接指向多远来实现的。我们通过使用滑动“门”来强制执行此限制。在压缩过程中,我们跟踪每个输入符号的起源。符号的起源是指该符号(直接或间接)在输入数据中最早引用的符号。通过使用这些信息,我们避免使用超出栅极边界的任何参考。我们修改了LZ77的gzip实现来实现LZB。然后,我们将LZB与另一种方法进行了比较,在这种方法中,数据被分割成更小的部分,并使用标准gzip分别压缩每个部分。结果表明,对于1024到128字节的段大小,LZB将压缩比提高了10%到50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LZB: Data Compression with Bounded References
In this paper, we propose a new compression/decompression algorithm called LZB which belongs to a class of algorithms related to Lempel-Ziv (LZ). The distinguishing characteristic of LZB is that it allows decompression from arbitrary points of compressed data. This is accomplished by setting a limit on how far back a reference in compressed data can directly or indirectly point to. We enforce this limit by using a sliding "gate." During the compression, we keep track of the origin of each input symbol.  The origin of a symbol is the earliest symbol in the input data that the symbol (directly or indirectly) refers to. By using this information we avoid using any reference which go beyond the gate boundary.  We modified the gzip implementation of LZ77 to implement LZB. We then compared LZB with the alternative method in which data is segmented into smaller pieces and each piece is compressed separately by using the standard gzip. The results show that LZB improves the compression ratio by 10 to 50 percent for 1024 to 128 byte segment sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1