用LDPC编码OFDM改进HomePlug电力线通信

C. Hsu, Neng Wang, W. Chan, P. Jain
{"title":"用LDPC编码OFDM改进HomePlug电力线通信","authors":"C. Hsu, Neng Wang, W. Chan, P. Jain","doi":"10.1109/INTLEC.2006.251659","DOIUrl":null,"url":null,"abstract":"Power line communications (PLC) has received much attention due to the wide connectivity and availability of power lines. Effective PLC must overcome the harsh and noisy environments inherent in PLC channels. HomePlug 1.0 is the current PLC standard in North America. The physical layer of HomePlug 1.0 employs orthogonal frequency division multiplexing (OFDM) as well as concatenated Reed-Solomon and convolutional coding. Aiming to obtain higher PLC throughput, we investigate the performance of OFDM with low-density parity-check (LDPC) codes and compare the proposed scheme with HomePlug 1.0 ROBO mode. In our simulations, the PLC channel is modeled by multipath fading, with Middleton's Class A noise (AWCN) model simulating the worst-case impulsive noise. We apply clipping to lessen the impact of impulsive noise. A simple but effective method is devised to estimate the variance of the clipped noise for LDPC decoding. In comparison with ROBO mode, the proposed scheme offers improved performance and lower computational complexity per decoded bit. Our scheme provides increased throughput by dispensing with ROBO mode's repetitive transmission of information to gain time diversity","PeriodicalId":356699,"journal":{"name":"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improving HomePlug Power Line Communications with LDPC Coded OFDM\",\"authors\":\"C. Hsu, Neng Wang, W. Chan, P. Jain\",\"doi\":\"10.1109/INTLEC.2006.251659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power line communications (PLC) has received much attention due to the wide connectivity and availability of power lines. Effective PLC must overcome the harsh and noisy environments inherent in PLC channels. HomePlug 1.0 is the current PLC standard in North America. The physical layer of HomePlug 1.0 employs orthogonal frequency division multiplexing (OFDM) as well as concatenated Reed-Solomon and convolutional coding. Aiming to obtain higher PLC throughput, we investigate the performance of OFDM with low-density parity-check (LDPC) codes and compare the proposed scheme with HomePlug 1.0 ROBO mode. In our simulations, the PLC channel is modeled by multipath fading, with Middleton's Class A noise (AWCN) model simulating the worst-case impulsive noise. We apply clipping to lessen the impact of impulsive noise. A simple but effective method is devised to estimate the variance of the clipped noise for LDPC decoding. In comparison with ROBO mode, the proposed scheme offers improved performance and lower computational complexity per decoded bit. Our scheme provides increased throughput by dispensing with ROBO mode's repetitive transmission of information to gain time diversity\",\"PeriodicalId\":356699,\"journal\":{\"name\":\"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2006.251659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2006.251659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于电力线的广泛连接和可用性,电力线通信(PLC)受到了广泛的关注。有效的PLC必须克服PLC信道固有的恶劣和噪声环境。HomePlug 1.0是目前北美的PLC标准。HomePlug 1.0的物理层采用正交频分复用(OFDM)以及串联里德-所罗门编码和卷积编码。为了获得更高的PLC吞吐量,我们研究了具有低密度奇偶校验(LDPC)码的OFDM的性能,并将该方案与HomePlug 1.0 ROBO模式进行了比较。在我们的仿真中,PLC信道采用多径衰落建模,米德尔顿的A类噪声(AWCN)模型模拟最坏情况下的脉冲噪声。我们采用了削波来减少脉冲噪声的影响。提出了一种简单有效的LDPC译码噪声裁剪方差估计方法。与ROBO模式相比,该方案具有更高的性能和更低的每解码比特的计算复杂度。我们的方案通过取消ROBO模式的重复信息传输来获得时间分集,从而提高了吞吐量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving HomePlug Power Line Communications with LDPC Coded OFDM
Power line communications (PLC) has received much attention due to the wide connectivity and availability of power lines. Effective PLC must overcome the harsh and noisy environments inherent in PLC channels. HomePlug 1.0 is the current PLC standard in North America. The physical layer of HomePlug 1.0 employs orthogonal frequency division multiplexing (OFDM) as well as concatenated Reed-Solomon and convolutional coding. Aiming to obtain higher PLC throughput, we investigate the performance of OFDM with low-density parity-check (LDPC) codes and compare the proposed scheme with HomePlug 1.0 ROBO mode. In our simulations, the PLC channel is modeled by multipath fading, with Middleton's Class A noise (AWCN) model simulating the worst-case impulsive noise. We apply clipping to lessen the impact of impulsive noise. A simple but effective method is devised to estimate the variance of the clipped noise for LDPC decoding. In comparison with ROBO mode, the proposed scheme offers improved performance and lower computational complexity per decoded bit. Our scheme provides increased throughput by dispensing with ROBO mode's repetitive transmission of information to gain time diversity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Active Clamp Converter with Full Resonant Switching Float Life Expectancy of VRLA-Batteries Based on High Temperature Float Tests Impact of Discharge Rate, Design and Test Parameter Extended Run Fuel Cell Backup Power: Solving the Hydrogen Problem Ground Fault Detection by Differential Monitoring of the Float Current Different Frequency Instabilities of Averaged Current Controlled Boost PFC AC-DC Regulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1