利用新规则矩对伸长和收缩图像进行分类

P. Raveendran, S. Jegannathan, S. Omatu
{"title":"利用新规则矩对伸长和收缩图像进行分类","authors":"P. Raveendran, S. Jegannathan, S. Omatu","doi":"10.1109/ICNN.1994.374880","DOIUrl":null,"url":null,"abstract":"This paper presents a technique to classify images that have been elongated or contracted. The problem is formulated using conventional regular moments. It is shown that the conventional regular moment-invariants remain no longer invariant when the image is scaled unequally in the x- and y-directions. A method is proposed to form moment-invariants that do not change under such unequal scaling. Results of computer simulations for images are also included verifying the validity of the method proposed.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of elongated and contracted images using new regular moments\",\"authors\":\"P. Raveendran, S. Jegannathan, S. Omatu\",\"doi\":\"10.1109/ICNN.1994.374880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technique to classify images that have been elongated or contracted. The problem is formulated using conventional regular moments. It is shown that the conventional regular moment-invariants remain no longer invariant when the image is scaled unequally in the x- and y-directions. A method is proposed to form moment-invariants that do not change under such unequal scaling. Results of computer simulations for images are also included verifying the validity of the method proposed.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种对被拉长或收缩的图像进行分类的技术。这个问题是用常规矩来表述的。结果表明,当图像在x和y方向上进行不相等缩放时,常规矩不变量不再保持不变。提出了一种在这种不等尺度下形成不变矩的方法。计算机图像仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of elongated and contracted images using new regular moments
This paper presents a technique to classify images that have been elongated or contracted. The problem is formulated using conventional regular moments. It is shown that the conventional regular moment-invariants remain no longer invariant when the image is scaled unequally in the x- and y-directions. A method is proposed to form moment-invariants that do not change under such unequal scaling. Results of computer simulations for images are also included verifying the validity of the method proposed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1