多任务多视图学习的一致聚类算法

Yiling Zhang, Yan Yang, Wei Zhou, Xiaocao Ouyang, Xiaobo Zhang
{"title":"多任务多视图学习的一致聚类算法","authors":"Yiling Zhang, Yan Yang, Wei Zhou, Xiaocao Ouyang, Xiaobo Zhang","doi":"10.1109/ISKE47853.2019.9170399","DOIUrl":null,"url":null,"abstract":"Multitask multiview clustering involves multitask algorithms and multiview algorithms in clustering. As there exists certain relationship among multiple tasks and abundant features in various views, multitask multiview clustering utilizing latent structures to promote the performance for single task, has received much attention recently. We propose a consensus clustering method in this paper for multitask multiview situation $(C^{2} {MTMV})$. It firstly integrates the features from various views to produce a consistent representation for each task. Then it further explores the knowledge existing in within-task and between-tasks and transfers them into other related tasks to assist in clustering. Experimental results comparing with 6 existing algorithms on 5 datasets show the superiority of our method.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Consensus Clustering Algorithm for Multitask Multiview Learning\",\"authors\":\"Yiling Zhang, Yan Yang, Wei Zhou, Xiaocao Ouyang, Xiaobo Zhang\",\"doi\":\"10.1109/ISKE47853.2019.9170399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multitask multiview clustering involves multitask algorithms and multiview algorithms in clustering. As there exists certain relationship among multiple tasks and abundant features in various views, multitask multiview clustering utilizing latent structures to promote the performance for single task, has received much attention recently. We propose a consensus clustering method in this paper for multitask multiview situation $(C^{2} {MTMV})$. It firstly integrates the features from various views to produce a consistent representation for each task. Then it further explores the knowledge existing in within-task and between-tasks and transfers them into other related tasks to assist in clustering. Experimental results comparing with 6 existing algorithms on 5 datasets show the superiority of our method.\",\"PeriodicalId\":399084,\"journal\":{\"name\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE47853.2019.9170399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多任务多视图聚类涉及多任务算法和聚类中的多视图算法。由于多任务之间存在一定的联系,且各视图的特征丰富,利用潜在结构提高单任务性能的多任务多视图聚类方法近年来受到广泛关注。针对多任务多视图场景$(C^{2} {MTMV})$,提出了一种一致性聚类方法。它首先集成来自不同视图的特征,为每个任务生成一致的表示。然后进一步挖掘任务内和任务间存在的知识,并将其转移到其他相关任务中以辅助聚类。与现有的6种算法在5个数据集上的对比实验结果表明了本文方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Consensus Clustering Algorithm for Multitask Multiview Learning
Multitask multiview clustering involves multitask algorithms and multiview algorithms in clustering. As there exists certain relationship among multiple tasks and abundant features in various views, multitask multiview clustering utilizing latent structures to promote the performance for single task, has received much attention recently. We propose a consensus clustering method in this paper for multitask multiview situation $(C^{2} {MTMV})$. It firstly integrates the features from various views to produce a consistent representation for each task. Then it further explores the knowledge existing in within-task and between-tasks and transfers them into other related tasks to assist in clustering. Experimental results comparing with 6 existing algorithms on 5 datasets show the superiority of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1