基于改进强度Pareto进化算法的多目标大数据视图物化

Akshay Kumar, T. Kumar
{"title":"基于改进强度Pareto进化算法的多目标大数据视图物化","authors":"Akshay Kumar, T. Kumar","doi":"10.4018/jitr.299947","DOIUrl":null,"url":null,"abstract":"Big data view materialization enhances the performance of Big data queries. This is a complex problem due to large volume, heterogeneity, high rate of data generation, low integrity and low value of Big data. Big data view materialization is a bi-objective optimization problem with the objectives - minimization of query evaluation time for a set of workload queries over a window of time and minimization of update processing cost of the views. Structure of Big data views can be represented as directed graph, which can be used to identify the candidate Big data views for a given set of queries. Evolutionary algorithms can be used to solve the problem of Big data view materialization. This paper presents an algorithm based on Strength Pareto Evolutionary Algorithm (SPEA-2) to generate a set of optimal solutions to the bi-objective Big data view selection problem.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Objective Big Data View Materialization Using Improved Strength Pareto Evolutionary Algorithm\",\"authors\":\"Akshay Kumar, T. Kumar\",\"doi\":\"10.4018/jitr.299947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data view materialization enhances the performance of Big data queries. This is a complex problem due to large volume, heterogeneity, high rate of data generation, low integrity and low value of Big data. Big data view materialization is a bi-objective optimization problem with the objectives - minimization of query evaluation time for a set of workload queries over a window of time and minimization of update processing cost of the views. Structure of Big data views can be represented as directed graph, which can be used to identify the candidate Big data views for a given set of queries. Evolutionary algorithms can be used to solve the problem of Big data view materialization. This paper presents an algorithm based on Strength Pareto Evolutionary Algorithm (SPEA-2) to generate a set of optimal solutions to the bi-objective Big data view selection problem.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.299947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.299947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大数据视图物化增强了大数据查询的性能。大数据体量大、异构性强、数据生成速率高、完整性低、价值低,是一个复杂的问题。大数据视图物化是一个双目标优化问题,其目标是在一个时间窗口内最小化一组工作负载查询的查询评估时间和最小化视图的更新处理成本。大数据视图的结构可以表示为有向图,可用于识别给定查询集的候选大数据视图。进化算法可以用来解决大数据视图物化问题。针对双目标大数据视图选择问题,提出了一种基于强度帕累托进化算法(SPEA-2)的最优解生成算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Objective Big Data View Materialization Using Improved Strength Pareto Evolutionary Algorithm
Big data view materialization enhances the performance of Big data queries. This is a complex problem due to large volume, heterogeneity, high rate of data generation, low integrity and low value of Big data. Big data view materialization is a bi-objective optimization problem with the objectives - minimization of query evaluation time for a set of workload queries over a window of time and minimization of update processing cost of the views. Structure of Big data views can be represented as directed graph, which can be used to identify the candidate Big data views for a given set of queries. Evolutionary algorithms can be used to solve the problem of Big data view materialization. This paper presents an algorithm based on Strength Pareto Evolutionary Algorithm (SPEA-2) to generate a set of optimal solutions to the bi-objective Big data view selection problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1