通过关联完成和跟踪实现工业物联网的鲁棒高效隐私保护

A. Lalos, Evangelos Vlachos, K. Berberidis, A. Fournaris, C. Koulamas
{"title":"通过关联完成和跟踪实现工业物联网的鲁棒高效隐私保护","authors":"A. Lalos, Evangelos Vlachos, K. Berberidis, A. Fournaris, C. Koulamas","doi":"10.1109/INDIN41052.2019.8972154","DOIUrl":null,"url":null,"abstract":"The Industrial IoT (IIoT) is a key element of Industry 4.0, bringing together modern sensor technology, fog - cloud computing platforms, and artificial intelligence (AI) to create smart, self-optimizing industrial equipment and facilities. Though, the scale and sensitivity degree of information continuously increases, giving rise to serious privacy concerns. In this work we address the problem of efficiently and effectively tracking the structure of multivariate streams recorded in a network of IIoT devices. The time varying correlation data values are used to add noise which maximally preserves privacy, in the sense that it is very hard to be removed. To improve communication efficiency between connected IoT devices, we exploit low rank properties of the correlation matrices, and track the essential correlations from a small subset of correlation values estimated by a subset of network nodes. Extensive simulation studies, validate the correctness, efficiency, and effectiveness of our approach in terms of computational complexity, transmission energy efficiency and privacy preservation.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and Efficient Privacy Preservation in Industrial IoT via correlation completion and tracking\",\"authors\":\"A. Lalos, Evangelos Vlachos, K. Berberidis, A. Fournaris, C. Koulamas\",\"doi\":\"10.1109/INDIN41052.2019.8972154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Industrial IoT (IIoT) is a key element of Industry 4.0, bringing together modern sensor technology, fog - cloud computing platforms, and artificial intelligence (AI) to create smart, self-optimizing industrial equipment and facilities. Though, the scale and sensitivity degree of information continuously increases, giving rise to serious privacy concerns. In this work we address the problem of efficiently and effectively tracking the structure of multivariate streams recorded in a network of IIoT devices. The time varying correlation data values are used to add noise which maximally preserves privacy, in the sense that it is very hard to be removed. To improve communication efficiency between connected IoT devices, we exploit low rank properties of the correlation matrices, and track the essential correlations from a small subset of correlation values estimated by a subset of network nodes. Extensive simulation studies, validate the correctness, efficiency, and effectiveness of our approach in terms of computational complexity, transmission energy efficiency and privacy preservation.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业物联网(IIoT)是工业4.0的关键要素,它将现代传感器技术、雾云计算平台和人工智能(AI)结合在一起,创造出智能的、自我优化的工业设备和设施。然而,信息的规模和敏感程度不断增加,引起了严重的隐私问题。在这项工作中,我们解决了高效和有效地跟踪IIoT设备网络中记录的多变量流结构的问题。时变的相关数据值被用来添加噪声,最大限度地保护隐私,从某种意义上说,这是很难去除的。为了提高连接物联网设备之间的通信效率,我们利用相关矩阵的低秩属性,并从一组网络节点估计的一小部分相关值中跟踪基本相关性。广泛的仿真研究,验证了我们的方法在计算复杂性,传输能量效率和隐私保护方面的正确性,效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust and Efficient Privacy Preservation in Industrial IoT via correlation completion and tracking
The Industrial IoT (IIoT) is a key element of Industry 4.0, bringing together modern sensor technology, fog - cloud computing platforms, and artificial intelligence (AI) to create smart, self-optimizing industrial equipment and facilities. Though, the scale and sensitivity degree of information continuously increases, giving rise to serious privacy concerns. In this work we address the problem of efficiently and effectively tracking the structure of multivariate streams recorded in a network of IIoT devices. The time varying correlation data values are used to add noise which maximally preserves privacy, in the sense that it is very hard to be removed. To improve communication efficiency between connected IoT devices, we exploit low rank properties of the correlation matrices, and track the essential correlations from a small subset of correlation values estimated by a subset of network nodes. Extensive simulation studies, validate the correctness, efficiency, and effectiveness of our approach in terms of computational complexity, transmission energy efficiency and privacy preservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1