基于在线保守学习的人检测

P. Roth, H. Grabner, D. Skočaj, Horst Bischof, A. Leonardis
{"title":"基于在线保守学习的人检测","authors":"P. Roth, H. Grabner, D. Skočaj, Horst Bischof, A. Leonardis","doi":"10.1109/VSPETS.2005.1570919","DOIUrl":null,"url":null,"abstract":"We present a novel on-line conservative learning framework for an object detection system. All algorithms operate in an on-line mode, in particular we also present a novel on-line AdaBoost method. The basic idea is to start with a very simple object detection system and to exploit a huge amount of unlabeled video data by being very conservative in selecting training examples. The key idea is to use reconstructive and discriminative classifiers in an iterative co-training fashion to arrive at increasingly better object detectors. We demonstrate the framework on a surveillance task where we learn person detectors that are tested on two surveillance video sequences. We start with a simple moving object classifier and proceed with incremental PCA (on shape and appearance) as a reconstructive classifier, which in turn generates a training set for a discriminative on-line AdaBoost classifier","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"On-line Conservative Learning for Person Detection\",\"authors\":\"P. Roth, H. Grabner, D. Skočaj, Horst Bischof, A. Leonardis\",\"doi\":\"10.1109/VSPETS.2005.1570919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel on-line conservative learning framework for an object detection system. All algorithms operate in an on-line mode, in particular we also present a novel on-line AdaBoost method. The basic idea is to start with a very simple object detection system and to exploit a huge amount of unlabeled video data by being very conservative in selecting training examples. The key idea is to use reconstructive and discriminative classifiers in an iterative co-training fashion to arrive at increasingly better object detectors. We demonstrate the framework on a surveillance task where we learn person detectors that are tested on two surveillance video sequences. We start with a simple moving object classifier and proceed with incremental PCA (on shape and appearance) as a reconstructive classifier, which in turn generates a training set for a discriminative on-line AdaBoost classifier\",\"PeriodicalId\":435841,\"journal\":{\"name\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSPETS.2005.1570919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

提出了一种用于目标检测系统的在线保守学习框架。所有算法都在在线模式下运行,特别是我们还提出了一种新的在线AdaBoost方法。基本思路是从一个非常简单的目标检测系统开始,通过非常保守地选择训练样本来利用大量未标记的视频数据。关键思想是在迭代的共同训练方式中使用重构和判别分类器来达到越来越好的目标检测器。我们在一个监控任务中演示了该框架,其中我们学习了在两个监控视频序列上进行测试的人员检测器。我们从一个简单的移动对象分类器开始,并继续使用增量PCA(在形状和外观上)作为重建分类器,这反过来又为判别在线AdaBoost分类器生成训练集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line Conservative Learning for Person Detection
We present a novel on-line conservative learning framework for an object detection system. All algorithms operate in an on-line mode, in particular we also present a novel on-line AdaBoost method. The basic idea is to start with a very simple object detection system and to exploit a huge amount of unlabeled video data by being very conservative in selecting training examples. The key idea is to use reconstructive and discriminative classifiers in an iterative co-training fashion to arrive at increasingly better object detectors. We demonstrate the framework on a surveillance task where we learn person detectors that are tested on two surveillance video sequences. We start with a simple moving object classifier and proceed with incremental PCA (on shape and appearance) as a reconstructive classifier, which in turn generates a training set for a discriminative on-line AdaBoost classifier
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1