Sangwon Lee, Miryeong Kwon, Gyuyoung Park, Myoungsoo Jung
{"title":"LightPC","authors":"Sangwon Lee, Miryeong Kwon, Gyuyoung Park, Myoungsoo Jung","doi":"10.1145/3470496.3527397","DOIUrl":null,"url":null,"abstract":"We propose LightPC, a lightweight persistence-centric platform to make the system robust against power loss. LightPC consists of hardware and software subsystems, each being referred to as open-channel PMEM (OC-PMEM) and persistence-centric OS (PecOS). OC-PMEM removes physical and logical boundaries in drawing a line between volatile and nonvolatile data structures by unshackling new memory media from conventional PMEM complex. PecOS provides a single execution persistence cut to quickly convert the execution states to persistent information in cases of a power failure, which can eliminate persistent control overhead. We prototype LightPC's computing complex and OC-PMEM using our custom system board. PecOS is implemented based on Linux 4.19 and Berkeley bootloader on the hardware prototype. Our evaluation results show that OC-PMEM can make user-level performance comparable with a DRAM-only non-persistent system, while consuming 73% lower power and 69% less energy. LightPC also shortens the execution time of diverse HPC, SPEC, and In-memory DB workloads, compared to traditional persistent systems by 4.3X, on average.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LightPC\",\"authors\":\"Sangwon Lee, Miryeong Kwon, Gyuyoung Park, Myoungsoo Jung\",\"doi\":\"10.1145/3470496.3527397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose LightPC, a lightweight persistence-centric platform to make the system robust against power loss. LightPC consists of hardware and software subsystems, each being referred to as open-channel PMEM (OC-PMEM) and persistence-centric OS (PecOS). OC-PMEM removes physical and logical boundaries in drawing a line between volatile and nonvolatile data structures by unshackling new memory media from conventional PMEM complex. PecOS provides a single execution persistence cut to quickly convert the execution states to persistent information in cases of a power failure, which can eliminate persistent control overhead. We prototype LightPC's computing complex and OC-PMEM using our custom system board. PecOS is implemented based on Linux 4.19 and Berkeley bootloader on the hardware prototype. Our evaluation results show that OC-PMEM can make user-level performance comparable with a DRAM-only non-persistent system, while consuming 73% lower power and 69% less energy. LightPC also shortens the execution time of diverse HPC, SPEC, and In-memory DB workloads, compared to traditional persistent systems by 4.3X, on average.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose LightPC, a lightweight persistence-centric platform to make the system robust against power loss. LightPC consists of hardware and software subsystems, each being referred to as open-channel PMEM (OC-PMEM) and persistence-centric OS (PecOS). OC-PMEM removes physical and logical boundaries in drawing a line between volatile and nonvolatile data structures by unshackling new memory media from conventional PMEM complex. PecOS provides a single execution persistence cut to quickly convert the execution states to persistent information in cases of a power failure, which can eliminate persistent control overhead. We prototype LightPC's computing complex and OC-PMEM using our custom system board. PecOS is implemented based on Linux 4.19 and Berkeley bootloader on the hardware prototype. Our evaluation results show that OC-PMEM can make user-level performance comparable with a DRAM-only non-persistent system, while consuming 73% lower power and 69% less energy. LightPC also shortens the execution time of diverse HPC, SPEC, and In-memory DB workloads, compared to traditional persistent systems by 4.3X, on average.