LightPC

Sangwon Lee, Miryeong Kwon, Gyuyoung Park, Myoungsoo Jung
{"title":"LightPC","authors":"Sangwon Lee, Miryeong Kwon, Gyuyoung Park, Myoungsoo Jung","doi":"10.1145/3470496.3527397","DOIUrl":null,"url":null,"abstract":"We propose LightPC, a lightweight persistence-centric platform to make the system robust against power loss. LightPC consists of hardware and software subsystems, each being referred to as open-channel PMEM (OC-PMEM) and persistence-centric OS (PecOS). OC-PMEM removes physical and logical boundaries in drawing a line between volatile and nonvolatile data structures by unshackling new memory media from conventional PMEM complex. PecOS provides a single execution persistence cut to quickly convert the execution states to persistent information in cases of a power failure, which can eliminate persistent control overhead. We prototype LightPC's computing complex and OC-PMEM using our custom system board. PecOS is implemented based on Linux 4.19 and Berkeley bootloader on the hardware prototype. Our evaluation results show that OC-PMEM can make user-level performance comparable with a DRAM-only non-persistent system, while consuming 73% lower power and 69% less energy. LightPC also shortens the execution time of diverse HPC, SPEC, and In-memory DB workloads, compared to traditional persistent systems by 4.3X, on average.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LightPC\",\"authors\":\"Sangwon Lee, Miryeong Kwon, Gyuyoung Park, Myoungsoo Jung\",\"doi\":\"10.1145/3470496.3527397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose LightPC, a lightweight persistence-centric platform to make the system robust against power loss. LightPC consists of hardware and software subsystems, each being referred to as open-channel PMEM (OC-PMEM) and persistence-centric OS (PecOS). OC-PMEM removes physical and logical boundaries in drawing a line between volatile and nonvolatile data structures by unshackling new memory media from conventional PMEM complex. PecOS provides a single execution persistence cut to quickly convert the execution states to persistent information in cases of a power failure, which can eliminate persistent control overhead. We prototype LightPC's computing complex and OC-PMEM using our custom system board. PecOS is implemented based on Linux 4.19 and Berkeley bootloader on the hardware prototype. Our evaluation results show that OC-PMEM can make user-level performance comparable with a DRAM-only non-persistent system, while consuming 73% lower power and 69% less energy. LightPC also shortens the execution time of diverse HPC, SPEC, and In-memory DB workloads, compared to traditional persistent systems by 4.3X, on average.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LightPC
We propose LightPC, a lightweight persistence-centric platform to make the system robust against power loss. LightPC consists of hardware and software subsystems, each being referred to as open-channel PMEM (OC-PMEM) and persistence-centric OS (PecOS). OC-PMEM removes physical and logical boundaries in drawing a line between volatile and nonvolatile data structures by unshackling new memory media from conventional PMEM complex. PecOS provides a single execution persistence cut to quickly convert the execution states to persistent information in cases of a power failure, which can eliminate persistent control overhead. We prototype LightPC's computing complex and OC-PMEM using our custom system board. PecOS is implemented based on Linux 4.19 and Berkeley bootloader on the hardware prototype. Our evaluation results show that OC-PMEM can make user-level performance comparable with a DRAM-only non-persistent system, while consuming 73% lower power and 69% less energy. LightPC also shortens the execution time of diverse HPC, SPEC, and In-memory DB workloads, compared to traditional persistent systems by 4.3X, on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1