用于平台游戏程序生成关卡的多种群遗传算法

Lucas N. Ferreira, L. T. Pereira, C. Toledo
{"title":"用于平台游戏程序生成关卡的多种群遗传算法","authors":"Lucas N. Ferreira, L. T. Pereira, C. Toledo","doi":"10.1145/2598394.2598489","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-population genetic algorithm for procedural generation of levels for platform games such as Super Mario Bros (SMB). The algorithm evolves four aspects of the game during its generations: terrain, enemies, coins and blocks. Each aspect has its own codification, population and fitness function. At the end of the evolution, the best four aspects are combined to construct the level. The method has as input a vector of parameters to configure the characteristics of each aspect. Experiments were made to evaluate the capability of the method in generating interesting levels. Results showed the method can be controlled to generate different types of levels.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"20 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A multi-population genetic algorithm for procedural generation of levels for platform games\",\"authors\":\"Lucas N. Ferreira, L. T. Pereira, C. Toledo\",\"doi\":\"10.1145/2598394.2598489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-population genetic algorithm for procedural generation of levels for platform games such as Super Mario Bros (SMB). The algorithm evolves four aspects of the game during its generations: terrain, enemies, coins and blocks. Each aspect has its own codification, population and fitness function. At the end of the evolution, the best four aspects are combined to construct the level. The method has as input a vector of parameters to configure the characteristics of each aspect. Experiments were made to evaluate the capability of the method in generating interesting levels. Results showed the method can be controlled to generate different types of levels.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"20 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种用于平台游戏(如《超级马里奥兄弟》)程序生成关卡的多种群遗传算法。算法在每一代中进化游戏的四个方面:地形、敌人、硬币和方块。每个方面都有自己的编码、种群和适应度函数。在进化的最后,将四个最好的方面结合起来构建关卡。该方法具有一个参数向量作为输入,用于配置每个方面的特征。通过实验来评估该方法生成有趣关卡的能力。结果表明,该方法可控制生成不同类型的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-population genetic algorithm for procedural generation of levels for platform games
This paper presents a multi-population genetic algorithm for procedural generation of levels for platform games such as Super Mario Bros (SMB). The algorithm evolves four aspects of the game during its generations: terrain, enemies, coins and blocks. Each aspect has its own codification, population and fitness function. At the end of the evolution, the best four aspects are combined to construct the level. The method has as input a vector of parameters to configure the characteristics of each aspect. Experiments were made to evaluate the capability of the method in generating interesting levels. Results showed the method can be controlled to generate different types of levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1