虚拟数据中心基础设施网络工作优化的神经网络模型

I. Bolodurina, D. Parfenov
{"title":"虚拟数据中心基础设施网络工作优化的神经网络模型","authors":"I. Bolodurina, D. Parfenov","doi":"10.1109/TELFOR.2017.8249297","DOIUrl":null,"url":null,"abstract":"The paper describes an approach to development a neural network model for identification virtual network functions. Our solution are based on the analysis the statistical properties of flows circulating in the network of the virtual data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We developed an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. The approach applied in our investigation for placement of virtual network functions allows to optimizing traffic flows in virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.","PeriodicalId":422501,"journal":{"name":"2017 25th Telecommunication Forum (TELFOR)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural network model for optimize network work in the infrastructure of the virtual data center\",\"authors\":\"I. Bolodurina, D. Parfenov\",\"doi\":\"10.1109/TELFOR.2017.8249297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an approach to development a neural network model for identification virtual network functions. Our solution are based on the analysis the statistical properties of flows circulating in the network of the virtual data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We developed an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. The approach applied in our investigation for placement of virtual network functions allows to optimizing traffic flows in virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.\",\"PeriodicalId\":422501,\"journal\":{\"name\":\"2017 25th Telecommunication Forum (TELFOR)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Telecommunication Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR.2017.8249297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Telecommunication Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2017.8249297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种用于虚拟网络函数识别的神经网络模型的开发方法。我们的解决方案是基于对虚拟数据中心网络中流通的流量的统计特性和描述通过网络对象传输的数据包内容的特征的分析。这使我们能够建立最优的属性集来识别虚拟网络功能。我们开发了一种算法,利用我们研究中获得的数据来优化虚拟数据函数的放置。在我们的调查中应用的虚拟网络功能放置的方法允许优化虚拟数据中心的流量。该算法解决方案基于神经网络,这使得它可以在任意数量的网络函数副本上进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network model for optimize network work in the infrastructure of the virtual data center
The paper describes an approach to development a neural network model for identification virtual network functions. Our solution are based on the analysis the statistical properties of flows circulating in the network of the virtual data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We developed an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. The approach applied in our investigation for placement of virtual network functions allows to optimizing traffic flows in virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposing bat inspired heuristic algorithm for the optimization of GMPLS networks Investigation on temporal skewing among O-CDMA code carriers under fiber temperature variations Survey on machine learning algorithms as cloud service for CIDPS Identity provider deployment based on container technology Enhanced bandwidth PIFA antennas for 900/1800 MHz and WiFi 2400 MHz band with a dielectric cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1