基于图神经网络的近似计算质量控制误差分布预测

Lakshmi Sathidevi, Abhinav Sharma, Nan Wu, Xun Jiao, Cong Hao
{"title":"基于图神经网络的近似计算质量控制误差分布预测","authors":"Lakshmi Sathidevi, Abhinav Sharma, Nan Wu, Xun Jiao, Cong Hao","doi":"10.1109/ISQED57927.2023.10129393","DOIUrl":null,"url":null,"abstract":"While Approximate Computing (AxC) is a promising technique to trade off accuracy for energy efficiency, one fundamental challenge is the lack of accurate and informative error models of AxC applications. In this work, we propose PreAxC, a novel error modeling and prediction flow for AxC designs. Instead of using simple error statistics as in existing work, we use error distribution for AxC circuit error analysis with input awareness. We propose graph neural network (GNN) based methods to predict the error distribution of AxC programs, which are represented as data flow graphs (DFGs). We propose two approaches: model-free and model-based, where the former directly predicts the error distribution histogram, and the latter models the distribution using Gaussian Mixture Model (GMM) and predicts the GMM parameters. Experiment results demonstrate that our approaches can outperform existing error statistics and can successfully predict the error distribution, especially the model-free approach, even for completely unseen graphs (representing new AxC programs) during training.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PreAxC: Error Distribution Prediction for Approximate Computing Quality Control using Graph Neural Networks\",\"authors\":\"Lakshmi Sathidevi, Abhinav Sharma, Nan Wu, Xun Jiao, Cong Hao\",\"doi\":\"10.1109/ISQED57927.2023.10129393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While Approximate Computing (AxC) is a promising technique to trade off accuracy for energy efficiency, one fundamental challenge is the lack of accurate and informative error models of AxC applications. In this work, we propose PreAxC, a novel error modeling and prediction flow for AxC designs. Instead of using simple error statistics as in existing work, we use error distribution for AxC circuit error analysis with input awareness. We propose graph neural network (GNN) based methods to predict the error distribution of AxC programs, which are represented as data flow graphs (DFGs). We propose two approaches: model-free and model-based, where the former directly predicts the error distribution histogram, and the latter models the distribution using Gaussian Mixture Model (GMM) and predicts the GMM parameters. Experiment results demonstrate that our approaches can outperform existing error statistics and can successfully predict the error distribution, especially the model-free approach, even for completely unseen graphs (representing new AxC programs) during training.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然近似计算(AxC)是一种很有前途的技术,可以在准确性和能源效率之间进行权衡,但一个基本的挑战是AxC应用程序缺乏准确和信息丰富的误差模型。在这项工作中,我们提出了一种新的误差建模和预测流程PreAxC。本文采用误差分布的方法来分析具有输入感知的AxC电路误差,而不是像现有的工作那样使用简单的误差统计。我们提出了基于图神经网络(GNN)的方法来预测AxC程序的误差分布,并将其表示为数据流图(DFGs)。我们提出了两种方法:无模型和基于模型,前者直接预测误差分布直方图,后者使用高斯混合模型(GMM)建模分布并预测GMM参数。实验结果表明,我们的方法可以优于现有的误差统计,并且可以成功地预测误差分布,特别是无模型方法,即使是在训练过程中完全看不见的图(代表新的AxC程序)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PreAxC: Error Distribution Prediction for Approximate Computing Quality Control using Graph Neural Networks
While Approximate Computing (AxC) is a promising technique to trade off accuracy for energy efficiency, one fundamental challenge is the lack of accurate and informative error models of AxC applications. In this work, we propose PreAxC, a novel error modeling and prediction flow for AxC designs. Instead of using simple error statistics as in existing work, we use error distribution for AxC circuit error analysis with input awareness. We propose graph neural network (GNN) based methods to predict the error distribution of AxC programs, which are represented as data flow graphs (DFGs). We propose two approaches: model-free and model-based, where the former directly predicts the error distribution histogram, and the latter models the distribution using Gaussian Mixture Model (GMM) and predicts the GMM parameters. Experiment results demonstrate that our approaches can outperform existing error statistics and can successfully predict the error distribution, especially the model-free approach, even for completely unseen graphs (representing new AxC programs) during training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal Inter-layer Via Keep-out-zone in M3D IC: A Critical Process-aware Design Consideration HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning DC-Model: A New Method for Assisting the Analog Circuit Optimization Polynomial Formal Verification of a Processor: A RISC-V Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1