Min Gao, Yuanyuan Fei, Zhou Wang, Chunming Ma, Li Luo
{"title":"大型室内半监督指纹构建与定位系统","authors":"Min Gao, Yuanyuan Fei, Zhou Wang, Chunming Ma, Li Luo","doi":"10.1109/ICARCE55724.2022.10046610","DOIUrl":null,"url":null,"abstract":"Many applications of location-based indoor navigation services require precise location information of a user. While Global Positioning System (GPS) loses reliability indoors, fingerprints-based localization technology (FBLT) embodies superiority regarding accuracy and robustness. In a Bluetooth-based fingerprint localization system, a radio map is constructed offline and used as a reference for subsequent real-time localization tasks. However, the quality of the fingerprint radio map could be problematic when it comes to a large, broad space with low beacon density. Data collection in such a space could be exhausting as well. Another main issue is that different mobile devices receive heterogeneous signal strength at the same location. In this article, we propose a highly practical localization system with a semi-supervised learning fingerprints construction method that provides an efficient solution for a large-scale localization system in a complex indoor environment. We also conducted a series of experiments to evaluate the performance of this system.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised Fingerprint Construction and Localization System For Large Indoor Area\",\"authors\":\"Min Gao, Yuanyuan Fei, Zhou Wang, Chunming Ma, Li Luo\",\"doi\":\"10.1109/ICARCE55724.2022.10046610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications of location-based indoor navigation services require precise location information of a user. While Global Positioning System (GPS) loses reliability indoors, fingerprints-based localization technology (FBLT) embodies superiority regarding accuracy and robustness. In a Bluetooth-based fingerprint localization system, a radio map is constructed offline and used as a reference for subsequent real-time localization tasks. However, the quality of the fingerprint radio map could be problematic when it comes to a large, broad space with low beacon density. Data collection in such a space could be exhausting as well. Another main issue is that different mobile devices receive heterogeneous signal strength at the same location. In this article, we propose a highly practical localization system with a semi-supervised learning fingerprints construction method that provides an efficient solution for a large-scale localization system in a complex indoor environment. We also conducted a series of experiments to evaluate the performance of this system.\",\"PeriodicalId\":416305,\"journal\":{\"name\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCE55724.2022.10046610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised Fingerprint Construction and Localization System For Large Indoor Area
Many applications of location-based indoor navigation services require precise location information of a user. While Global Positioning System (GPS) loses reliability indoors, fingerprints-based localization technology (FBLT) embodies superiority regarding accuracy and robustness. In a Bluetooth-based fingerprint localization system, a radio map is constructed offline and used as a reference for subsequent real-time localization tasks. However, the quality of the fingerprint radio map could be problematic when it comes to a large, broad space with low beacon density. Data collection in such a space could be exhausting as well. Another main issue is that different mobile devices receive heterogeneous signal strength at the same location. In this article, we propose a highly practical localization system with a semi-supervised learning fingerprints construction method that provides an efficient solution for a large-scale localization system in a complex indoor environment. We also conducted a series of experiments to evaluate the performance of this system.