基于粒子群优化的自适应节点划分聚类协议

Dexin Ma, Jian Ma, Pengmin Xu, Lingyun Gai, Hai Wang, Guangjie Lv, Hongtao Shi
{"title":"基于粒子群优化的自适应节点划分聚类协议","authors":"Dexin Ma, Jian Ma, Pengmin Xu, Lingyun Gai, Hai Wang, Guangjie Lv, Hongtao Shi","doi":"10.1109/ICCA.2013.6565100","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment, and clustering is one of the most popular and effective approach for WSNs that require scalability and robustness. In this paper, we propose and analyze an Adaptive Node Partition Clustering protocol using Particle Swarm Optimization (ANPC-PSO), a protocol that partitions the network field adaptively and selects cluster heads (CHs) consider the networks states information. The results of performance evaluation show that ANPC-PSO can improve system lifetime and data delivery by distributing energy dissipation evenly in the networks.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An adaptive node partition clustering protocol using particle swarm optimization\",\"authors\":\"Dexin Ma, Jian Ma, Pengmin Xu, Lingyun Gai, Hai Wang, Guangjie Lv, Hongtao Shi\",\"doi\":\"10.1109/ICCA.2013.6565100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment, and clustering is one of the most popular and effective approach for WSNs that require scalability and robustness. In this paper, we propose and analyze an Adaptive Node Partition Clustering protocol using Particle Swarm Optimization (ANPC-PSO), a protocol that partitions the network field adaptively and selects cluster heads (CHs) consider the networks states information. The results of performance evaluation show that ANPC-PSO can improve system lifetime and data delivery by distributing energy dissipation evenly in the networks.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6565100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无线传感器网络(wsn)是用于监测环境的自治节点网络,对于需要可扩展性和鲁棒性的wsn,聚类是最流行和有效的方法之一。本文提出并分析了一种基于粒子群优化的自适应节点划分聚类协议(ANPC-PSO),该协议根据网络状态信息自适应划分网络域并选择簇头(CHs)。性能评估结果表明,ANPC-PSO通过在网络中均匀分配能量耗散,提高了系统寿命和数据传输能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive node partition clustering protocol using particle swarm optimization
Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment, and clustering is one of the most popular and effective approach for WSNs that require scalability and robustness. In this paper, we propose and analyze an Adaptive Node Partition Clustering protocol using Particle Swarm Optimization (ANPC-PSO), a protocol that partitions the network field adaptively and selects cluster heads (CHs) consider the networks states information. The results of performance evaluation show that ANPC-PSO can improve system lifetime and data delivery by distributing energy dissipation evenly in the networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1