棋盘角点检测中偏差的实验验证

M. J. Edwards, M. Hayes, R. Green
{"title":"棋盘角点检测中偏差的实验验证","authors":"M. J. Edwards, M. Hayes, R. Green","doi":"10.1109/IVCNZ51579.2020.9290652","DOIUrl":null,"url":null,"abstract":"The sub-pixel corner refinement algorithm in OpenCV is widely used to refine checkerboard corner location estimates to sub-pixel precision. This paper shows using both simulations and a large dataset of real images that the algorithm produces estimates with significant bias and noise which depend on the sub-pixel corner location. In the real images, the noise ranged from around 0.013 px at the pixel centre to 0.0072 px at the edges, a difference of around $1.8\\times$. The bias could not be determined from the real images due to residual lens distortion; in the simulated images it had a maximum magnitude of 0.043 px.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Validation of Bias in Checkerboard Corner Detection\",\"authors\":\"M. J. Edwards, M. Hayes, R. Green\",\"doi\":\"10.1109/IVCNZ51579.2020.9290652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sub-pixel corner refinement algorithm in OpenCV is widely used to refine checkerboard corner location estimates to sub-pixel precision. This paper shows using both simulations and a large dataset of real images that the algorithm produces estimates with significant bias and noise which depend on the sub-pixel corner location. In the real images, the noise ranged from around 0.013 px at the pixel centre to 0.0072 px at the edges, a difference of around $1.8\\\\times$. The bias could not be determined from the real images due to residual lens distortion; in the simulated images it had a maximum magnitude of 0.043 px.\",\"PeriodicalId\":164317,\"journal\":{\"name\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVCNZ51579.2020.9290652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

OpenCV中的亚像素角点优化算法被广泛用于将棋盘格角点位置估计细化到亚像素精度。本文使用模拟和真实图像的大型数据集表明,该算法产生的估计具有显著的偏差和噪声,这取决于亚像素角的位置。在真实图像中,噪声范围从像素中心的0.013 px到边缘的0.0072 px,差异约为1.8倍。由于残留的透镜畸变,无法从真实图像中确定偏差;在模拟图像中,其最大亮度为0.043 px。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Validation of Bias in Checkerboard Corner Detection
The sub-pixel corner refinement algorithm in OpenCV is widely used to refine checkerboard corner location estimates to sub-pixel precision. This paper shows using both simulations and a large dataset of real images that the algorithm produces estimates with significant bias and noise which depend on the sub-pixel corner location. In the real images, the noise ranged from around 0.013 px at the pixel centre to 0.0072 px at the edges, a difference of around $1.8\times$. The bias could not be determined from the real images due to residual lens distortion; in the simulated images it had a maximum magnitude of 0.043 px.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image and Text fusion for UPMC Food-101 using BERT and CNNs Predicting Cherry Quality Using Siamese Networks Wavelet Based Thresholding for Fourier Ptychography Microscopy Improving the Efficient Neural Architecture Search via Rewarding Modifications A fair comparison of the EEG signal classification methods for alcoholic subject identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1