进化的Kilobot机器人的个体和集体行为

M. Beckerleg, Chan Zhang
{"title":"进化的Kilobot机器人的个体和集体行为","authors":"M. Beckerleg, Chan Zhang","doi":"10.1109/AMC.2016.7496361","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how individual and collective behaviours of robots can be evolved using a novel technique of applying a genetic algorithm on a lookup table based chromosome. The evolved behaviours are: orbiting a stationary robot; navigation between three robots; follow the leader using six robots; and robot dispersal where the robots move away from each other. These behaviours are based on those used by Harvard University when demonstrating some of the collective behaviours that can be implemented by the Kilobot robot. With careful selection of the lookup tables and fitness functions all the above behaviours can be successfully evolved.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolving individual and collective behaviours for the Kilobot robot\",\"authors\":\"M. Beckerleg, Chan Zhang\",\"doi\":\"10.1109/AMC.2016.7496361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates how individual and collective behaviours of robots can be evolved using a novel technique of applying a genetic algorithm on a lookup table based chromosome. The evolved behaviours are: orbiting a stationary robot; navigation between three robots; follow the leader using six robots; and robot dispersal where the robots move away from each other. These behaviours are based on those used by Harvard University when demonstrating some of the collective behaviours that can be implemented by the Kilobot robot. With careful selection of the lookup tables and fitness functions all the above behaviours can be successfully evolved.\",\"PeriodicalId\":273847,\"journal\":{\"name\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2016.7496361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文演示了机器人的个体和集体行为是如何使用一种基于染色体查找表的遗传算法的新技术来进化的。进化后的行为是:绕着静止的机器人运行;三个机器人之间的导航;使用6个机器人跟随领队;机器人分散在彼此远离的地方。这些行为是基于哈佛大学在展示一些可以由Kilobot机器人实现的集体行为时使用的那些行为。通过仔细选择查找表和适应度函数,上述所有行为都可以成功进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving individual and collective behaviours for the Kilobot robot
This paper demonstrates how individual and collective behaviours of robots can be evolved using a novel technique of applying a genetic algorithm on a lookup table based chromosome. The evolved behaviours are: orbiting a stationary robot; navigation between three robots; follow the leader using six robots; and robot dispersal where the robots move away from each other. These behaviours are based on those used by Harvard University when demonstrating some of the collective behaviours that can be implemented by the Kilobot robot. With careful selection of the lookup tables and fitness functions all the above behaviours can be successfully evolved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D modeling and nonlinear control using algorithmic differentiation for mono-wheel robot Robust H∞ control for Active Magnetic Bearing system with imbalance of the rotor Double-segment sliding mode control for permanent magnet synchronous motor servo drives High back-drivable pseudo I-PD torque control using load-side torque observer with torsion torque sensor Position control system based on inertia measurement unit sensor fusion with Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1