{"title":"关于降低基于扫描的测试的移位和捕获功率","authors":"Jia Li, Q. Xu, Yu Hu, Xiaowei Li","doi":"10.1109/ASPDAC.2008.4484032","DOIUrl":null,"url":null,"abstract":"Power consumption in scan-based testing is a major concern nowadays. In this paper, we present a new X-fllling technique to reduce both shift power and capture power during scan tests, namely LSC-filling. The basic idea is to use as few as possible X-bits to keep the capture power under the peak power limit of the circuit under test (CUT), while using the remaining X-bits to reduce the shift power to cut down the CUT's average power consumption during scan tests as much as possible. In addition, by carefully selecting the X-filling order, our X-filling technique is able to achieve lower capture power when compared to existing methods. Experimental results on ISCAS'89 benchmark circuits show the effectiveness of the proposed methodology.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On reducing both shift and capture power for scan-based testing\",\"authors\":\"Jia Li, Q. Xu, Yu Hu, Xiaowei Li\",\"doi\":\"10.1109/ASPDAC.2008.4484032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power consumption in scan-based testing is a major concern nowadays. In this paper, we present a new X-fllling technique to reduce both shift power and capture power during scan tests, namely LSC-filling. The basic idea is to use as few as possible X-bits to keep the capture power under the peak power limit of the circuit under test (CUT), while using the remaining X-bits to reduce the shift power to cut down the CUT's average power consumption during scan tests as much as possible. In addition, by carefully selecting the X-filling order, our X-filling technique is able to achieve lower capture power when compared to existing methods. Experimental results on ISCAS'89 benchmark circuits show the effectiveness of the proposed methodology.\",\"PeriodicalId\":277556,\"journal\":{\"name\":\"2008 Asia and South Pacific Design Automation Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2008.4484032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4484032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On reducing both shift and capture power for scan-based testing
Power consumption in scan-based testing is a major concern nowadays. In this paper, we present a new X-fllling technique to reduce both shift power and capture power during scan tests, namely LSC-filling. The basic idea is to use as few as possible X-bits to keep the capture power under the peak power limit of the circuit under test (CUT), while using the remaining X-bits to reduce the shift power to cut down the CUT's average power consumption during scan tests as much as possible. In addition, by carefully selecting the X-filling order, our X-filling technique is able to achieve lower capture power when compared to existing methods. Experimental results on ISCAS'89 benchmark circuits show the effectiveness of the proposed methodology.