Luong Pham Van, J. D. Praeter, G. Wallendael, J. D. Cock, R. Walle
{"title":"HEVC中任意缩小预编码视频的机器学习","authors":"Luong Pham Van, J. D. Praeter, G. Wallendael, J. D. Cock, R. Walle","doi":"10.1109/ICCE.2015.7066464","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a machine learning based transcoding scheme for arbitrarily downsizing a pre-encoded High Efficiency Video Coding video. The spatial scaling factor can be freely selected to adapt the output bit rate to the bandwidth of the network. Furthermore, machine learning techniques can exploit the correlation between input and output coding information to predict the split-flag of coding units in a P-frame. We analyzed the performance of both offline and online training in the learning phase of transcoding. The experimental results show that the proposed techniques significantly reduce the transcoding complexity and achieve trade-offs between coding performance and complexity. In addition, we demonstrate that online training performs better than offline training.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Machine learning for arbitrary downsizing of pre-encoded video in HEVC\",\"authors\":\"Luong Pham Van, J. D. Praeter, G. Wallendael, J. D. Cock, R. Walle\",\"doi\":\"10.1109/ICCE.2015.7066464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a machine learning based transcoding scheme for arbitrarily downsizing a pre-encoded High Efficiency Video Coding video. The spatial scaling factor can be freely selected to adapt the output bit rate to the bandwidth of the network. Furthermore, machine learning techniques can exploit the correlation between input and output coding information to predict the split-flag of coding units in a P-frame. We analyzed the performance of both offline and online training in the learning phase of transcoding. The experimental results show that the proposed techniques significantly reduce the transcoding complexity and achieve trade-offs between coding performance and complexity. In addition, we demonstrate that online training performs better than offline training.\",\"PeriodicalId\":169402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2015.7066464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning for arbitrary downsizing of pre-encoded video in HEVC
In this paper, we propose a machine learning based transcoding scheme for arbitrarily downsizing a pre-encoded High Efficiency Video Coding video. The spatial scaling factor can be freely selected to adapt the output bit rate to the bandwidth of the network. Furthermore, machine learning techniques can exploit the correlation between input and output coding information to predict the split-flag of coding units in a P-frame. We analyzed the performance of both offline and online training in the learning phase of transcoding. The experimental results show that the proposed techniques significantly reduce the transcoding complexity and achieve trade-offs between coding performance and complexity. In addition, we demonstrate that online training performs better than offline training.