Mingming Wang, Dongsheng Li, Ziming Liu, Yijie Gong
{"title":"周期振荡环境下紧凑测试范围反射板对准方法","authors":"Mingming Wang, Dongsheng Li, Ziming Liu, Yijie Gong","doi":"10.1109/APCAP.2018.8538072","DOIUrl":null,"url":null,"abstract":"Large-scale reflector for compact test range (CTR) is usually obtained by block manufacturing followed by unified assembly alignment. As a consequence, appropriate alignment method is vital for acquiring reflector surfaces with high accuracy. However, periodic oscillation occurs during alignment of reflector panels due to insufficient depth and no isolation of the concrete foundation. To resolve the alignment problem caused by periodic oscillation of the foundation, this paper proposes an iterative self-modified alignment method using a laser tracker, the key to which is how to plan alignment sequence and select appropriate reference points for modifying measurement coordinate system. The method effectively reduces the extra alignment deviation due to periodic oscillation of the foundation, where the loss of accuracy is only 7.9 percent of the theoretical value, while the root mean square of the surface error reduces to 0.041 millimeter. Finally, a microwave amplitude and phase test system based on probe scanning has been established to evaluate electromagnetic performance of the CTR, and the results meet the design requirements.","PeriodicalId":198124,"journal":{"name":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Alignment Method of Reflector Panels for Compact Test Range in Periodic Oscillation Environment\",\"authors\":\"Mingming Wang, Dongsheng Li, Ziming Liu, Yijie Gong\",\"doi\":\"10.1109/APCAP.2018.8538072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale reflector for compact test range (CTR) is usually obtained by block manufacturing followed by unified assembly alignment. As a consequence, appropriate alignment method is vital for acquiring reflector surfaces with high accuracy. However, periodic oscillation occurs during alignment of reflector panels due to insufficient depth and no isolation of the concrete foundation. To resolve the alignment problem caused by periodic oscillation of the foundation, this paper proposes an iterative self-modified alignment method using a laser tracker, the key to which is how to plan alignment sequence and select appropriate reference points for modifying measurement coordinate system. The method effectively reduces the extra alignment deviation due to periodic oscillation of the foundation, where the loss of accuracy is only 7.9 percent of the theoretical value, while the root mean square of the surface error reduces to 0.041 millimeter. Finally, a microwave amplitude and phase test system based on probe scanning has been established to evaluate electromagnetic performance of the CTR, and the results meet the design requirements.\",\"PeriodicalId\":198124,\"journal\":{\"name\":\"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAP.2018.8538072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP.2018.8538072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alignment Method of Reflector Panels for Compact Test Range in Periodic Oscillation Environment
Large-scale reflector for compact test range (CTR) is usually obtained by block manufacturing followed by unified assembly alignment. As a consequence, appropriate alignment method is vital for acquiring reflector surfaces with high accuracy. However, periodic oscillation occurs during alignment of reflector panels due to insufficient depth and no isolation of the concrete foundation. To resolve the alignment problem caused by periodic oscillation of the foundation, this paper proposes an iterative self-modified alignment method using a laser tracker, the key to which is how to plan alignment sequence and select appropriate reference points for modifying measurement coordinate system. The method effectively reduces the extra alignment deviation due to periodic oscillation of the foundation, where the loss of accuracy is only 7.9 percent of the theoretical value, while the root mean square of the surface error reduces to 0.041 millimeter. Finally, a microwave amplitude and phase test system based on probe scanning has been established to evaluate electromagnetic performance of the CTR, and the results meet the design requirements.