{"title":"推特辩论的立场分类:加密辩论作为一个用例","authors":"Aseel Addawood, Jodi Schneider, Masooda N. Bashir","doi":"10.1145/3097286.3097288","DOIUrl":null,"url":null,"abstract":"Social media have enabled a revolution in user-generated content. They allow users to connect, build community, produce and share content, and publish opinions. To better understand online users' attitudes and opinions, we use stance classification. Stance classification is a relatively new and challenging approach to deepen opinion mining by classifying a user's stance in a debate. Our stance classification use case is tweets that were related to the spring 2016 debate over the FBI's request that Apple decrypt a user's iPhone. In this \"encryption debate,\" public opinion was polarized between advocates for individual privacy and advocates for national security. We propose a machine learning approach to classify stance in the debate, and a topic classification that uses lexical, syntactic, Twitter-specific, and argumentative features as a predictor for classifications. Models trained on these feature sets showed significant increases in accuracy relative to the unigram baseline.","PeriodicalId":130378,"journal":{"name":"Proceedings of the 8th International Conference on Social Media & Society","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Stance Classification of Twitter Debates: The Encryption Debate as A Use Case\",\"authors\":\"Aseel Addawood, Jodi Schneider, Masooda N. Bashir\",\"doi\":\"10.1145/3097286.3097288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media have enabled a revolution in user-generated content. They allow users to connect, build community, produce and share content, and publish opinions. To better understand online users' attitudes and opinions, we use stance classification. Stance classification is a relatively new and challenging approach to deepen opinion mining by classifying a user's stance in a debate. Our stance classification use case is tweets that were related to the spring 2016 debate over the FBI's request that Apple decrypt a user's iPhone. In this \\\"encryption debate,\\\" public opinion was polarized between advocates for individual privacy and advocates for national security. We propose a machine learning approach to classify stance in the debate, and a topic classification that uses lexical, syntactic, Twitter-specific, and argumentative features as a predictor for classifications. Models trained on these feature sets showed significant increases in accuracy relative to the unigram baseline.\",\"PeriodicalId\":130378,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Social Media & Society\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Social Media & Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097286.3097288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Social Media & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097286.3097288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stance Classification of Twitter Debates: The Encryption Debate as A Use Case
Social media have enabled a revolution in user-generated content. They allow users to connect, build community, produce and share content, and publish opinions. To better understand online users' attitudes and opinions, we use stance classification. Stance classification is a relatively new and challenging approach to deepen opinion mining by classifying a user's stance in a debate. Our stance classification use case is tweets that were related to the spring 2016 debate over the FBI's request that Apple decrypt a user's iPhone. In this "encryption debate," public opinion was polarized between advocates for individual privacy and advocates for national security. We propose a machine learning approach to classify stance in the debate, and a topic classification that uses lexical, syntactic, Twitter-specific, and argumentative features as a predictor for classifications. Models trained on these feature sets showed significant increases in accuracy relative to the unigram baseline.