基于搜索结果分析的语义相关度计算

Jiangjiao Duan, Jianping Zeng
{"title":"基于搜索结果分析的语义相关度计算","authors":"Jiangjiao Duan, Jianping Zeng","doi":"10.1109/WI-IAT.2012.29","DOIUrl":null,"url":null,"abstract":"Automatically computing the semantic relatedness of two words is an essential step for many tasks in natural language processing, including information retrieval. Previous approaches to computing semantic relatedness used statistical techniques or lexical resources. We propose Searcher Result Analysis (SRA), a novel method that captures related text from search engine by issuing proper queries. Inferring the relatedness is then based on word occurrences in certain number of pages. Compared with the previous state of the art, using SRA to computing semantic relatedness based on Wikipedia can achieve competitive results with no need to maintain a local copy of remote resources. It is also shown that the correctness can be further improved by selecting proper knowledge resources or corpora for SRA.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing Semantic Relatedness Based on Search Result Analysis\",\"authors\":\"Jiangjiao Duan, Jianping Zeng\",\"doi\":\"10.1109/WI-IAT.2012.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically computing the semantic relatedness of two words is an essential step for many tasks in natural language processing, including information retrieval. Previous approaches to computing semantic relatedness used statistical techniques or lexical resources. We propose Searcher Result Analysis (SRA), a novel method that captures related text from search engine by issuing proper queries. Inferring the relatedness is then based on word occurrences in certain number of pages. Compared with the previous state of the art, using SRA to computing semantic relatedness based on Wikipedia can achieve competitive results with no need to maintain a local copy of remote resources. It is also shown that the correctness can be further improved by selecting proper knowledge resources or corpora for SRA.\",\"PeriodicalId\":220218,\"journal\":{\"name\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2012.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自动计算两个词的语义相关性是自然语言处理中包括信息检索在内的许多任务的重要步骤。以前计算语义相关性的方法使用统计技术或词汇资源。本文提出了搜索结果分析(SRA)方法,该方法通过发出适当的查询从搜索引擎中捕获相关文本。然后根据单词在一定数量的页面中的出现情况来推断相关性。与以前的技术相比,使用SRA来计算基于Wikipedia的语义相关性可以在不需要维护远程资源的本地副本的情况下获得具有竞争力的结果。通过选择合适的知识资源或语料库,可以进一步提高SRA的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing Semantic Relatedness Based on Search Result Analysis
Automatically computing the semantic relatedness of two words is an essential step for many tasks in natural language processing, including information retrieval. Previous approaches to computing semantic relatedness used statistical techniques or lexical resources. We propose Searcher Result Analysis (SRA), a novel method that captures related text from search engine by issuing proper queries. Inferring the relatedness is then based on word occurrences in certain number of pages. Compared with the previous state of the art, using SRA to computing semantic relatedness based on Wikipedia can achieve competitive results with no need to maintain a local copy of remote resources. It is also shown that the correctness can be further improved by selecting proper knowledge resources or corpora for SRA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1